Answer:
the probability is 2/9
Step-by-step explanation:
Assuming the coins are randomly selected, the probability of pulling a dime first is the number of dimes (4) divided by the total number of coins (10).
p(dime first) = 4/10 = 2/5
Then, having drawn a dime, there are 9 coins left, of which 5 are nickels. The probability of randomly choosing a nickel is 5/9.
The joint probability of these two events occurring sequentially is the product of their probabilities:
p(dime then nickel) = (2/5)×(5/9) = 2/9
_____
<em>Alternate solution</em>
You can go at this another way. You can list all the pairs of coins that can be drawn. There are 90 of them: 10 first coins and, for each of those, 9 coins that can be chosen second. Of these 90 possibilities, there are 4 dimes that can be chosen first, and 5 nickels that can be chosen second, for a total of 20 possible dime-nickel choices out of the 90 total possible outcomes.
p(dime/nickel) = 20/90 = 2/9
A geometric sequence is a sequence in which there is a common ratio between any two consecutive terms. In this case if X:Y:Z are in the ratio of 2:7:8 the multiplying by a constant k, we have X=2k, Y= 7k and Z=8k.
Then if X, Y-12, Z form a Geometric sequence, it means X/Y-12=Y-12/Z which is the same as 2k/7k-12=7k-12/8k if we cross multply, we get
16k²= 49k²-168k +144
33k²-168k+144 =0 solving for k
k = 4 or 1.091 if we take the whole number to find the values of X,Y and z,
X= 8, Y= 28 and Z=32
Answer:
C. 60
Step-by-step explanation:
60+10=70