Answer:
The power for circular shaft is 7.315 hp and tubular shaft is 6.667 hp
Explanation:
<u>Polar moment of Inertia</u>

= 0.14374 in 4
<u>Maximum sustainable torque on the solid circular shaft</u>

=
= 3658.836 lb.in
=
lb.ft
= 304.9 lb.ft
<u>Maximum sustainable torque on the tubular shaft</u>

= 
= 3334.8 lb.in
=
lb.ft
= 277.9 lb.ft
<u>Maximum sustainable power in the solid circular shaft</u>

= 
= 4023.061 lb. ft/s
=
hp
= 7.315 hp
<u>Maximum sustainable power in the tubular shaft</u>

= 
= 3666.804 lb.ft /s
=
hp
= 6.667 hp
I did not see the post. But if she actually needs help She can dm me. keep y'all's head up❤
Answer:
91.87 m/s
Explanation:
<u>Given:</u>
- x = initial distance of the electron from the proton = 6 cm = 0.06 m
- y = initial distance of the electron from the proton = 3 cm = 0.03 m
- u = initial velocity of the electron = 0 m/s
<u>Assume:</u>
- m = mass of an electron =

- v = final velocity of the electron
- e = magnitude of charge on an electron =

- p = magnitude of charge on a proton =

We know that only only electric field due to proton causes to move from a distance of 6 cm from proton to 3 cm distance from it. This means the electric force force does work on the electron to move it from one initial position to the final position which is equal to the change in potential energy of the electron due to proton.
Now, according to the work-energy theorem, the total work done by the electric force on the electron due to proton is equal to the kinetic energy change in it.


Hence, when the electron is at a distance of c cm from the proton, it moves with a velocity of 91.87 m/s.
GPE=mgh
m= 12.5kg
g= 9.81 always
h=?
568=12.5*9.81*h
Solve for h
You will get 4.63m
<span>3.2x10^-2 seconds (0.032 seconds)
This is a simple matter of division. I also suspect it's an exercise in scientific notation, so here is how you divide in scientific notation:
9.6 x 10^6 m / 3x10^8 m/s
First, divide the significands like you would normally.
9.6 / 3 = 3.2
And subtract the exponent. So
6 - 8 = -2
So the answer is 3.2 x 10^-2
And since the significand is less than 10 and at least 1, we don't need to normalize it.
So it takes 3.2x10^-2 seconds for the radio signal to reach the satellite.</span>