1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TiliK225 [7]
3 years ago
13

The density of gold is 19 300kg/m cube. what is the mass of gold cube with the length 0.2015m?

Physics
1 answer:
Sergeeva-Olga [200]3 years ago
4 0

Answer:

157.9 kg

Explanation:

Density: This can be defined as the ratio of the mass of a body and it's volume.

The S.I unit of density is kg/m³.

From the question,

Density = Mass/volume

D = m/v............................ Equation 1

Where D = Density of gold, m = mass of gold, v = volume of gold.

make m the subject of the equation

m = Dv.................... Equation 2

Since the gold is a cube,

v = l³................... Equation 3

Where l = length of the gold cube.

Substitute equation 3 into equation 2

m = Dl³............... Equation 4

Given: D = 19300 kg/m³, l = 0.2015 m

Substitute into equation 4

m = 19300(0.2015)³

m = 157.9 kg.

You might be interested in
An 11.0 -W energy-efficient fluorescent lightbulb is designed to produce the same illumination as a conventional 40.0-W incandes
yarga [219]

The amount or cost that the user of the energy-efficient bulb save during 100h of use will be $0.319.

<h3>How to calculate the cost?</h3>

For the 11.0W bulb, it should be noted that the value will be:

= 11.0 × 100 × (1/1000) × 0.110

= $0.121

The 40W bulb will be:

= 40 × 100 × (1/1000) × 0.110

= $0.44

Therefore, the amount that will be saved will be:

= $0.44 - $0.121

= $0.319

Learn more about cost on:

brainly.com/question/25109150

#SPJ4

6 0
2 years ago
Which two options would INCREASE the electric force between two charged particles?
atroni [7]

The electric force between two charged particles can be increased by decreasing the distance between the two particles.

<h3>How to increase electric force between two charged particles.</h3>

The technique of decreasing the separation distance between objects increases the force of attraction or repulsion between the objects. while

increasing the separation distance between objects decreases the force of attraction or repulsion between the objects.

Read more on Electric Force:

brainly.com/question/17692887

#SPJ1

7 0
2 years ago
A government agency estimated that air bags have saved over 14,000 lives as of April 2004 in the United States. (They also state
balu736 [363]

To solve this problem it is necessary to apply the concepts related to momentum, momentum and Force. Mathematically the Impulse can be described as

I = F*t

Where,

F= Force

t= time

At the same time the moment can be described as a function of mass and velocity, that is

P = m\Delta v \rightarrow P=m(v_1-v_2)

Where,

m = mass

v = Velocity

From equilibrium the impulse is equal to the momentum, therefore

I = p

Ft = m(v_1-v_2)

PART A) Since the body ends at rest, we have the final speed is zero, so the momentum would be

p=m(v_1-v_2)

p = 75*0.15

p = 1125Kg\cdot m/s

Therefore the magnitude of the person's impulse is 1125Kg.m/s

PART B) From the equation obtained previously we have that the Force would be:

Ft = m(v_1-v_2)

F(0.025)= 1125

F= 45000N

Therefore the magnitude of the average force the airbag exerts on the person is 45000N

6 0
3 years ago
Which arrow represents the change of state described<br> above?<br> M<br> N<br> P<br><br> Q
Anon25 [30]

Answer: The Q arrow

Explanation: when the solid is heated it changes into a liquid state first this action represented the Q arrow

5 0
1 year ago
A- 1000 m/s2<br> Xi-0m<br> Xf-0.75m<br> Vf-?
sleet_krkn [62]

Answer:

The final velocity of the object is,  v_{f} = 27 m/s    

Explanation:

Given,

The acceleration of the object, a = 1000 m/s²

The initial displacement of the object, x_{i} = 0 m

The final displacement of the object,  x_{f} = 0.75 m

The initial velocity of the object will be, v_{i} = o m/s

The final velocity of the object, v_{f} = ?

The average velocity of the object,

                                    v = ( x_{f} - x_{i} )/ t

                                      = 0.75 / t

The acceleration is given by the relation

                                     a = v / t

                                   1000 m/s² = 0.75 / t²

                                            t² = 7.5 x 10⁻⁴

                                            t = 0.027 s

Using the I equation of motion,

                                  v_{f} = u + at

Substituting the values

                                   v_{f} = 0 + 1000 x 0.027

                                                           = 27 m/s

Hence, the final velocity of the object is,  v_{f} = 27 m/s          

8 0
3 years ago
Other questions:
  • Ken’s community is completely dependent on agriculture for their income. They cultivate and breed domestic species for their foo
    9·2 answers
  • A flashlight is an example of
    11·1 answer
  • 1.An 8-kilogram bowling ball is rolling in a straight line toward you. If its momentum is 16 kg•m/s, how fast is it traveling?
    10·1 answer
  • Aray diagram is shown.<br> What does the letter red line represent?
    13·1 answer
  • Two cars collide on the parkway. The drivers are following too closely and the driver in the front slows because of traffic to a
    7·1 answer
  • Which method of testing substances is a sure way to identify a chemical reaction?
    8·2 answers
  • When a metal element bonds with a non mental element they are known as ____ bond
    15·1 answer
  • The main difference between speed and velocity involves
    13·2 answers
  • Determine the focal length of a plano-concave lens (refractive index n =1.5) with 24 cm radius of curvature on its curve surface
    11·1 answer
  • what is the cost of monthly (30 days) electric bill of ana if her city's cost of electricity is 0.05$ per kwh and she uses three
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!