1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TiliK225 [7]
3 years ago
13

The density of gold is 19 300kg/m cube. what is the mass of gold cube with the length 0.2015m?

Physics
1 answer:
Sergeeva-Olga [200]3 years ago
4 0

Answer:

157.9 kg

Explanation:

Density: This can be defined as the ratio of the mass of a body and it's volume.

The S.I unit of density is kg/m³.

From the question,

Density = Mass/volume

D = m/v............................ Equation 1

Where D = Density of gold, m = mass of gold, v = volume of gold.

make m the subject of the equation

m = Dv.................... Equation 2

Since the gold is a cube,

v = l³................... Equation 3

Where l = length of the gold cube.

Substitute equation 3 into equation 2

m = Dl³............... Equation 4

Given: D = 19300 kg/m³, l = 0.2015 m

Substitute into equation 4

m = 19300(0.2015)³

m = 157.9 kg.

You might be interested in
A hydrogen atom that has an electron in the n = 2 state absorbs a photon. What wavelength must the photon possess to send the el
Deffense [45]

Answer:

486nm

Explanation:

in order for an electron to transit from one level to another, the wavelength emitted is given by Rydberg Equation which states that

\frac{1}{wavelength}=R.[\frac{1}{n_{f}^{2} } -\frac{1}{n_{i}^{2} }] \\n_{f}=2\\n_{i}=4\\R=Rydberg constant =1.097*10^{7}m^{-1}\\subtitiute \\\frac{1}{wavelength}=1.097*10^{7}[\frac{1}{2^{2} } -\frac{1}{4^{2}}]\\\frac{1}{wavelength}= 1.097*10^{7}*0.1875\\\frac{1}{wavelength}= 2.06*10^{6}\\wavelength=4.86*10{-7}m\\wavelength= 486nm\\

Hence the photon must possess a wavelength of 486nm in order to send the electron to the n=4 state

4 0
3 years ago
YALL THIS QUESTION IS DUE IN 2 HOURS AND I HAVE 3 MORE PAGED TO DO PLEASE HELP ME WITH THIS PHYSICS HOMEWORK PROBLEM!!!! I ATTAC
goldfiish [28.3K]

Answer:

I dont know :)

Explanation:

7 0
3 years ago
A 25 kg child plays on a swing having support ropes that are 2.20 m long. A friend pulls her back until the ropes are 42◦ from t
Semmy [17]

Answer:

A) P.E = 138.44 J

B) The velocity of swing at bottom, v = 3.33 m/s

C) The work done, W = -138.44 J

Explanation:

Given,

The mass of the child, m = 25 Kg

The length of the swing rope, L = 2.2 m

The angle of the swing to the vertical position, ∅ = 42°

A) The potential energy at the initial position ∅ = 42° is given by the relation

                                P.E = mgh joule

Considering h  = 0 for the vertical position

The h at ∅ = 42° is  h = L (1 - cos∅)

                               P.E = mgL (1 - cos∅)

Substituting the given values in the above equation

                               P.E = 25 x 9.8 x 2.2 (1 - cos42°)

                                      = 138.44 J

The potential energy for the child just as she is released, compared to the potential energy at the bottom of the swing is, P.E = 138.44 J

B) The velocity of the swing at the bottom.

At bottom of the swing the P.E is completely transformed into the K.E

                  ∴                 K.E = P.E

                                     1/2 mv² = 138.44

                                     1/2 x 25 x v² 138.44

                                            v² = 11.0752

                                             v = 3.33 m/s

The velocity of the swing at the bottom is, v = 3.33 m/s

C) The work done by the tension in the rope from initial position to the bottom

             Tension on string, T = Force acting on the swing, F

                      W=L\int\limits^0_\phi{F} \, d \phi

                             =L\int\limits^0_\phi{mg.sin \phi} \, d \phi

                            = -Lmg[cos\phi]_{42}^{0}

                            = - 2.2 x 25 x 9.8 [cos0 - cos 42°]

                            = - 138.44 J

The negative sign in the in energy is that the work done is towards the gravitational force of attraction.

The work done by the tension in the ropes as the child swings from the initial position to the bottom of the swing, W = - 138.44 J

3 0
4 years ago
The Mars Curiosity rover was required to land on the surface of Mars with a velocity of 1 m/s. Given the mass of the landing veh
Aliun [14]

Answer:

The value is      A   = 39315 \  m^2

Explanation:

From the question we are told that

    The velocity which the rover is suppose to land with is  v  =  1 \ m/s

    The  mass of the rover and the parachute is  m  =  2270 \ kg

     The  drag coefficient is  C__{D}}  =  0.5

      The atmospheric density of Earth  is  \rho =  1.2 \  kg/m^3

     The acceleration due to gravity in Mars is  g_m  =  3.689 \  m/s^2

     

Generally the Mars  atmosphere density is mathematically represented as

          \rho_m  =  0.71 *  \rho

=>        \rho_m  =  0.71 *  1.2

=>        \rho_m  = 0.852 \  kg/m^3

Generally the drag force on the rover and the parachute  is mathematically represented as

          F__{D}} =  m  *  g_{m}

=>       F__{D}} =  2270   *  3.689  

=>       F__{D}} =  8374 \ N  

Gnerally this drag force is mathematically represented as

         F__{D}} =   C__{D}} *  A *  \frac{\rho_m * v^2 }{2}

Here A is the frontal area

So  

         A   =  \frac{2 *  F__D }{ C__D}  *  \rho_m  * v^2   }

=>       A   =  \frac{2 * 8374 }{ 0.5 *  0.852    *  1 ^2   }

=>       A   = 39315 \  m^2

8 0
3 years ago
What is oxygenated blood? De-oxygenated blood?
WITCHER [35]
Oxygenated blood that has oxygen in them while de-oxygenated blood has carbon dioxide. in which the oxygenated blood carries the oxygen throughout the body since that cells need oxygen to function. called "gas exchange." once the cells got their required oxygen. the carbon dioxide needs somewhere to go, thus having deoxygenated blood. and that carbon dioxide needs to get out of the body

6 0
3 years ago
Read 2 more answers
Other questions:
  • Which best explains why magnets can push on or pull other magnets without touching them?
    8·1 answer
  • The compound PCl5 decomposes into Cl2 and PCl3. The equilibrium of PCl5(g) Cl2(g) + PCl3(g) has a Keq of 2.24 x 10-2 at 327°C. W
    5·2 answers
  • Explain how the planets in the solar system formed
    5·1 answer
  • 9<br>How can you prove that air has weight​
    12·2 answers
  • For refraction to occur in a wave, the wave must
    9·2 answers
  • A machine is brought in to accomplish a task which requires 100 ft.-lbs. of work. Which statements are correct:
    7·1 answer
  • What is the process that changes smaller atoms into larger ones in a star
    11·1 answer
  • Does the moon control the waves in the ocean?
    13·2 answers
  • A sheet of steel 1.4 mm thick has nitrogen atmospheres on both sides at 1200°C and is permitted to achieve a steady-state diffus
    9·1 answer
  • shoppers often take clothes outside to look at them in daylight before deciding whether to buy why do they do this pls answer
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!