The sun is the mother star of the solar system, which only emits light to half of the planet, while the other part is always dark.
The sun emits light towards the earth, which dominates all life on earth. The movements of the Moon around the Earth and of the Earth around the Sun are complex. Movements of rotation around their own axes are superimposed on movements of orbital translation. The Earth and the Moon rotate around their own axes: This is rotation.
Answer:
t=0.42s
Explanation:
Here you have an inelastic collision. By the conservation of the momentum you have:

m1: mass of the bullet
m2: wooden block mass
v1: velocity of the bullet
v2: velocity of the wooden block
v: velocity of bullet and wooden block after the collision.
By noticing that after the collision, both objects reach the same height from where the wooden block was dropped, you can assume that v is equal to the negative of v2. In other words:

Where you assumed that the negative direction is upward. By replacing and doing v2 the subject of the formula you get:

Now, with this information you can use the equation for the final speed of an accelerated motion and doing t the subject of the formula. IN other words:

hence, the time is t=0.42 s
From rest, a rock is dropped from a garage roof. The roof is 6.0 meters above ground level. The rock will reach the earth at a speed of 10.849 meters per second.
<h3>What is velocity?</h3>
The change of displacement with respect to time is defined as the velocity. Velocity is a vector quantity.
it is a time-based component. Velocity at any angle is resolved to get its component of x and y-direction.
Given data:
V(Final velocity)=? (m/sec)
h(height)= 6.0 m
u(Initial velocity)=0 m/sec
g(gravitational acceleration)=9.81 m/s²
Newton's third equation of motion:

Hence, the velocity of the rock as it hits the ground will be 10.849 m/sec.
To learn more about the velocity refer to the link ;
brainly.com/question/862972
#SPJ1
Answer:
(A) No
(B) Speed decreases
Explanation:
(A) since there is nothing propelling the boat and the friction between the ice and the boat and also air resistance is negligible the net force of the system in the horizontal direction is zero and hence there is no change in the horizontal momentum of the boat.
(B) Since the person had not velocity in the horizontal direction before landing on the boat but now has one after landing on the boat, the speed of the boat will decrease because the momentum has to be conserved (remember there is no change in it).
Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m