Answer:
3.258 m/s
Explanation:
k = Spring constant = 263 N/m (Assumed, as it is not given)
x = Displacement of spring = 0.7 m (Assumed, as it is not given)
= Coefficient of friction = 0.4
Energy stored in spring is given by

As the energy in the system is conserved we have

The speed of the 8 kg block just before collision is 3.258 m/s
Answer:
<em>The statement is true</em>
Explanation:
<u>Energy Conversion
</u>
When an object starts to fall in free air, it speeds up as it falls. The force of gravity acting on the object causes energy to be transferred from its gravitational potential energy to its kinetic energy. We can safely say the height converts to speed and vice-versa. If no external forces act on the system, we can easily calculate heights and speeds by knowing the total mechanical energy (gravitational potential plus kinetic) is conserved.
Answer:

Answer:
Red
Explanation:
I looked at the picture...where it says red is 700
The momentum, p, of any object having mass m and the velocity v is

Let
and
be the masses of the large truck and the car respectively, and
and V_S be the velocities of the large truck and the car respectively.
So, by using equation (i),
the momentum of the large truck 
and the momentum of the small car
.
If the large truck has the same momentum as a small car, then the condition is

The equation (ii) can be rearranged as

So, the first scenario:


So, to have the same momentum, the ratio of mass of truck to the mass of the car must be equal to the ratio of velocity of the car to the velocity of the truck.
The other scenario:


So, to have the same momentum, the ratio of mass of truck to the velocity of the car must be equal to the ratio of mass of the car to the velocity of the truck.
C)Visible Light-the hint:Visible light.