Your weight on the moon given the data from the question is 110.5 N
<h3>Definition of mass and weight </h3>
Mass is simply defined as the quantity of matter present in an object. The mass of an object is constant irrespective of the location of the object.
Weight is simply defined as the gravitational pull on an object. The weight of an object varies from place to place due to gravity.
<h3>Relationship between mass and weight </h3>
Mass and weight are related according to the following equation
Weight (W) = mass (m) × Acceleration due to gravity (g)
<h3>How to determine the weight on the moon</h3>
- Mass (m) = 65 Kg
- Acceleration due to gravity on the moon (g) = 1.7 m/s²
- Weight (W) =?
W = mg
W = 65 × 1.7
W = 110.5 N
Learn more about mass and weight:
brainly.com/question/14684564
#SPJ1
Answer:
The climate in colorado is combination of high elevation, midlatitude, and continental interior geography results in a cool, dry, and invigorating climate. The average annual temperature for the state is 43.5 degrees Fahrenheit (F), which is 13.7 degrees below the global mean
Explanation:
Answer:
C. Blood
Explanation:
All the other ones are removed from the body normally.
<h2>The distance between students is 2.46 m</h2>
Explanation:
The force of attraction due to Newton's gravitation law is
F = 
Here G is the gravitational constant
m₁ is the mass of one student
m₂ is the mass of second student .
and r is the distance between them
Thus r = 
If we substitute the values in the above equation
r = 
= 2.46 m
Answer:
<h2>The answer is planetary motion</h2>
Explanation:
According to Johannes Kepler, the laws governing planetary motion
states that:
1. The orbit of a planet is an ellipse with the Sun at one of the two foci.
2. A line segment joining a planet and the Sun sweeps out equal areas
during equal intervals of time.
3. The square of a planet's orbital period is proportional to the cube of the semi-major of its orbit.
Johannes Kepler was a German astronomer, mathematician, and astrologer
Born: 27 December 1571, Weil der Stadt, Germany
Died: 15 November 1630