Hey there!:
Here the Statement - D is correct.
Because Orbitals containing the core electrons are more attracted towards nuclear charge and hence less shilded from nuclear charge than an orbital that doesn't penetrate. Also due to more attraction between the orbital containing core electron and nucleus, it will have less energy.
Hope this helps!
The average kinetic energy of a gas particle is directly proportional to the temperature. An increase in temperature increases the speed in which the gas molecules move. All gases at a given temperature have the same average kinetic energy. Lighter gas molecules move faster than heavier molecules.
The work-energy theorem states that the change in kinetic energy of the particle is equal to the work done on the particle:

The work done on the particle is the integral of the force on dx:

So, this corresponds to the change in kinetic energy of the particle.
Answer:
a= 23.65 ft/s²
Explanation:
given
r= 14.34m
ω=3.65rad/s
Ф=Ф₀ + ωt
t = Ф - Ф₀/ω
= (98-0)×
/3.65
98°= 1.71042 rad
1.7104/3.65
t= 0.47 s
r₁(not given)
assuming r₁ =20 in
r₁ = r₀ + ut(uniform motion)
u = r₁ - r₀/t
r₀ = 14.34 in= 1.195 ft
r₁ = 20 in = 1.67 ft
= (1.667 - 1.195)/0.47
0.472/0.47
u= 1.00ft/s
acceleration at collar p
a=rω²
= 1.67 × 3.65²
a = 22.25ft/s²
acceleration of collar p related to the rod = 0
coriolis acceleration = 2ωu
= 2× 3.65×1 = 7.3 ft/s²
acceleration of collar p
= 22.5j + 0 + 7.3i
√(22.5² + 7.3²)
the magnitude of the acceleration of the collar P just as it reaches B in ft/s²
a= 23.65 ft/s²
Answer:
<h3>What is the angular speed of the earth around the sun? </h3>
It takes the Earth approximately 23 hours, 56 minutes and 4.09 seconds to make one complete revolution (360 degrees). This length of time is known as a sidereal day. The Earth rotates at a moderate angular velocity of

<h3>
What is the tangential speed of the earth? </h3>
The earth rotates once every 23 hours, 56 minutes and 4.09053 seconds, called the sidereal period, and its circumference is roughly 40,075 kilometers. Thus, the surface of the earth at the equator moves at a speed of 460 meters per second--or roughly 1,000 miles per hour.