Answer:
Planets were like gods.
Explanation:
To the people of many ancient civilizations, the planets were thought to be deities. Our names for the planets are the Roman names for these deities. For example, Mars was the god of war and Venus the goddess of love.
Their velocity afterwards is 2.88 m/s east
Explanation:
We can solve this problem by using the law of conservation of momentum. In fact, for an isolated system (= no external force), the total momentum must be conserved before and after the collision. So we can write:
where: in this case:
is the mass of the first player
is the initial velocity of the first player (choosing east as positive direction)
is the mass of the second player
is the initial velocity of the second player
is their combined velocity afterwards
Solving for v, we find:
And the sign is positive, so the direction is east.
Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Eh not really sure bout this one
Answer:
In the previous section, we defined circular motion. The simplest case of circular motion is uniform circular motion, where an object travels a circular path at a constant speed. Note that, unlike speed, the linear velocity of an object in circular motion is constantly changing because it is always changing direction. We know from kinematics that acceleration is a change in velocity, either in magnitude or in direction or both. Therefore, an object undergoing uniform circular motion is always accelerating, even though the magnitude of its velocity is constant.
You experience this acceleration yourself every time you ride in a car while it turns a corner. If you hold the steering wheel steady during the turn and move at a constant speed, you are executing uniform circular motion. What you notice is a feeling of sliding (or being flung, depending on the speed) away from the center of the turn. This isn’t an actual force that is acting on you—it only happens because your body wants to continue moving in a straight line (as per Newton’s first law) whereas the car is turning off this straight-line path. Inside the car it appears as if you are forced away from the center of the turn. This fictitious force is known as the centrifugal force. The sharper the curve and the greater your speed, the more noticeable this effect becomes.
Figure 6.7 shows an object moving in a circular path at constant speed. The direction of the instantaneous tangential velocity is shown at two points along the path. Acceleration is in the direction of the change in velocity; in this case it points roughly toward the center of rotation. (The center of rotation is at the center of the circular path). If we imagine Δs becoming smaller and smaller, then the acceleration would point exactly toward the center of rotation, but this case is hard to draw. We call the acceleration of an object moving in uniform circular motion the centripetal acceleration ac because centripetal means center seeking.
hope it helps! stay safe and tell me if im wrong pls :D
(brainliest if you want, or if its right pls) :)
Answer:
<em>a) increases</em>
Explanation:
Almost all substance or material undergoes expansion due to heating. Heat gives thermal energy to the molecules of a substance increasing their body temperature. The temperature of a substance is the measure of the average kinetic energy of the molecules of that substance. When the temperature of a substance increases, the molecules begin to agitate and try to move far from each other, leading to either a linear, area, or cubic expansion, or all three of them. Metals like copper expand very well on heating, and their expansion is relatively minute, but very observable. When the face of such a copper is scratched to give and angle, heating the copper uniformly will cause the copper to expand, leading to an increase in the angle formed.