Answer:
a) w = 9.599 10⁴ rad / s
, b) v = 3.35 10¹⁶ m / s
, c) a = 3.22 10²¹ m / s²
Explanation:
For this exercise we must use the relation of angular kinematics
a) angular velocity, the distance remembered in orbit between time (period)
w = 2π r / T
w = 2 π 3.59 10¹¹ / 2.35 10⁷
w = 9.599 10⁴ rad / s
b) linear and angular velocity are related by the equation
v = w r
v = 9,599 10⁴ 3.49 10¹¹
v = 3.35 10¹⁶ m / s
c) the centripetal acceleration is
a = v² / r = w² r
a = (9,599 10⁴)² 3.49 10¹¹
a = 3.22 10²¹ m / s²
Answer:
vertical force cannot change the velocity on the x-axis. t =x/v₀ₓ
Explanation:
The force is a vector magnitude, so the forces on the x-axis affect the acceleration on this axis. Consequently a vertical force cannot change the velocity on the x-axis.
= m g
Fₓ = 0
The horizontal velocity in projectile motion is constant, if we neglect the air resistance, so it can be used to find the time of a horizontal displacement
x = v₀ₓ t
t =x/v₀ₓ
The only magnitude that is the same for both movements is the time that is a scalar
<span>The answers are --
a) wind direction
b) wind speed
e) intensity of precipitation
f) location of precipitation</span>
Well, that would be a plane (flat) mirror
<span>provided that </span>
<span>the mirror and the object are oriented parallel to each other</span>