Since energy is lost in the roller coaster due to friction, the hill should little lower than the starting height since some of the kinetic energy at the bottom of the first hill is lost due to friction so it will not have as much potential energy at the top of the next hill.
A roller coaster is a good way to demonstrate the principle of conservation of energy. Recall that energy is neither created nor destroyed but can be converted from one form to another.
In a roller coaster, all the heights are not the same because energy is lost along the line. Therefore, the students must bear in mind that the hill should be at least a little lower than the starting height because some of the kinetic energy at the bottom of the first hill will be converted to other types of energy due to friction so it will not have as much potential energy at the top of the next hill.
Learn more: brainly.com/question/14281129
Answer:
If we consider a system where the y-axis as the South-North line, and the x-axis as the West-East line (where North and East are the positive sides)
We know that the sun goes from East to West, so in our system, the sun goes from the positive side of the x-axis to the negative side of the x-axis.
Where we would see this if we were standing right in the equator line.
If we where in other point of the planet, the Sun will stil move from East to West, but it will have a little tilt along the path, so we will have a little displacement in the y-axis. This displacement will depend on where we are, if we are at the North of the equator, we will se that the sun seems to go a little towards South as it goes to the West side.
Answer:
E = 307667 N/C
Explanation:
Since the object's mass is 1 g, then its weight in newtons is 0.001 * 9.8 = 0.0098 N.
This weight should have the same magnitude of the vertical component of the tension T of the string (T * cos(37)) so we can find the magnitude of the tension T via:
0.0098 N = T * cos(37)
then T = 0.0098/cos(37) N = 0.01227 N
Knowing the tension's magnitude, we can find its horizontal component:
T * sin(37) = 0.007384 N
and now we can obtain the value of the electric field since we know the charge of the ball to be: -2.4 * 10^(-8) C:
0.007384 N = E * 2.4 * 10^(-8) C
Then E = 0.007384/2.4 * 10^(-8) N/C
E = 307667 N/C
Mass/volume is the formulae