<h2>Answer: The more precisely you know the position of a particle, the less well you can know the momentum of the particle
</h2>
The Heisenberg uncertainty principle was enunciated in 1927. It postulates that the fact that each particle has a wave associated with it, imposes restrictions on the ability to determine <u>its position and speed at the same time. </u>
In other words:
<em>It is impossible to measure simultaneously (according to quantum physics), and with absolute precision, the value of the position and the momentum (linear momentum) of a particle.</em>
<h2>So, the greater certainty is seeked in determining the position of a particle, the less is known its linear momentum and, therefore, its mass and velocity. </h2><h2 />
In fact, even with the most precise devices, the uncertainty in the measurement continues to exist. Thus, in general, the greater the precision in the measurement of one of these magnitudes, the greater the uncertainty in the measure of the other complementary variable.
Therefore the correct option is C.
The three longest wavelengths for the standing waves on a 264-cm long string that is fixed at both ends are:
- 5.2 meters.
- 2.6 meters.
- 1.7meters.
Given data:
Length of the fixed string = 264cms = 2.64 meters
The wavelength for standing waves is given by:
λ = 2L/n
where,
- λ is the wavelength
- L is the length of the string
For n = 1,
= 5.2 meters
For n = 2,
= 2.6 meters
For n = 3,
= 1.7 meters
To learn more about standing waves: brainly.com/question/14151246
#SPJ4
Answer:
The reason that it takes longer to get the water to boiling temperature than it is to cool it down again is because heating in the most simple sense is inefficient and will cause a lot if energy lost while cooling is to be turn's into quite a efficient process.
Explanation:
Catalysts
a catalyst is something added to a reaction that speeds it up (or lowers the activation energy)
increasing the temp would speed up the whole reaction but not lower the activation energy
so B.
Answer:
I think A golf ball shot out of a small cannon
Explanation: