Answer:
The only difference between a planet and a dwarf planet is the area surrounding each celestial body. A dwarf planet has not cleared the area around its orbit, while a planet has.
Explanation:
the three criteria of the IAU for a full-sized planet are: It is in orbit around the Sun. It has sufficient mass to assume hydrostatic equilibrium (a nearly round shape). It has "cleared the neighborhood" around its orbit .
If it helps or doesn't I'm sorry, but if you even played the game Minecraft just remember it.
Gold, silver, coal, and iron come from ores.
Answer:
-22/15
Explanation:
the least common denominator is 15 so first you multiply -2/3 by 5 in both the numerator and denominator making it -10/15
Then you do the same to -4/5 except you multiply the numerator and denominator by 3 giving you -12/15
If you add -10/15+ -12/15 you get -22/15
No, that's silly.
You've got your Pfund series where electrons fall down to the 5th level,
your Brackett series where they fall to the 4th level, and your Paschen
series where they fall to the 3rd level. All of those transitions ploop out
photons at Infrared wavelengths.
THEN next you get your Balmer series, where the electrons fall in
to the 2nd level. Most of those are at visible wavelengths, but even
a few of the Balmer transitions are in the Ultraviolet.
And then there's the Lyman series, where electrons fall all the way
down to the #1 level. Those are ALL in the ultraviolet.
Increasing the masses of the objects and decreasing the distance between the objects