Answer:
I think decreases inversely
Explanation:
the third
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m
Answer:
(a) 0.017m/s^2
(b) 17/100,000
(c) 0.17m, 0.558ft
Explanation:
(a) speed = 60mph = 60m/1h × 1h/3600s = 0.017m/s, time = 10s
Acceleration (a) = speed ÷ time = 0.017m/s ÷ 10s = 0.0017m/s^2
(b) g = 9.8m/s^2, a = 0.0017m/s^2
a/g = 0.0017/9.8 = 0.00017 = 17/100,000
(c) Distance = speed × time = 0.017m/s × 10s = 0.17m
Distance in foot = 0.17 × 3.2808ft = 0.558ft
If he's falling in a straight line and his speed is not changing, that tells you that his acceleration is zero.
And THAT tells you that the forces on him are balanced, the net force acting on him is zero, and his motion is the same as it would be if there were NO force acting on him.