Taking the vertical component of the displacement
1.1 - 0.2 = 0.9 mile
The horizontal component of the displacement
-0.3 mile
The magnitude of the displacement is
√[ (0.9)² + (-0.3) ] = 0.95 mile
The direction is
θ = tan-1 (-0.3/0.9)
θ = 161.57 degrees.
To solve this problem we will apply the concepts related to wave velocity as a function of the tension and linear mass density. This is
Here
v = Wave speed
T = Tension
= Linear mass density
From this proportion we can realize that the speed of the wave is directly proportional to the square of the tension
Therefore, if there is an increase in tension of 4, the velocity will increase the square root of that proportion
The factor that the wave speed change is 2.
ANSWER:
What is the difference between heat and light? - Physics Stack ... Heat and light are different but they are both forms of energy. Heat is a form of kinetic energy contained in the random motion of the particles of a material. Light is a form of electromagnetic energy. As with other forms of energy, heat energy can be transformed into light energy and vice versa.
Kinetic Energy = 1/2 * m * v²
1/2 * 30 * 20²
1/2 * 30 * 400
12000/2
6000 J.