Answer:
It would be hard to test scientifically since it's subjective and can only be proven true if you conducted some experimentations and observations.
I am using the equation F=ma (force equals mass times acceleration) to solve these problems.
1. You are looking for force, and have mass and acceleration. You just plug in the values for mass and acceleration to get the force needed.
F=(15kg)(5m/s^2)
F=75N
2. Again, you are looking for force, and just need to plug in the values for mass and acceleration
F=(3kg)(2.4m/s^2)
F=7.2N
3. In this problem, you have force and mass, but need to find acceleration. To do this, you need to get acceleration alone on one side of the equation - divide each side by m. Your equation will now be F/m=a
a=(5N)/(3.7kg)
a=18.5m/s^2
I did not use significant figures. Let me know if you need to do that and need any help on that. Hope this helps!
Answer:

Explanation:
Speed = Distance / Time
So, to find distance, we actually divide distance by rime.
Answer:
The average force exerted on the man by the ground therefore is 153.319.53 N
Explanation:
Given the following information
Mass of man, m = 75 kg
height of fall, h = 0.48 cm
velocity just before landing, v = 4.43 m/s
We therefore have
The work required to break the fall is equal to the kinetic energy of motion, just before touching the ground
Work done = Energy to absorb Kinetic Energy KE = 0.5·m·v²= F·h
Where:
F = Force required to break the fall
Therefore the force, F = (0.5·m·v² )/h
= 0.5×75 kg ×(4.43 m/s)²/(0.0048 m) = 153319.53 N
The average force exerted on him by the ground is therefore
= 153319.53 N.