Answer
Hi,
An increase in amplitude from 3m to 6 m increases the energy it transports. The frequency of the wave is not affected
Explanation
Amplitude is the height of a wave where as frequency is the number of waves that pass by each second. A wave with bigger amplitude has more energy than a wave with smaller amplitude. A point where more waves pass contains more energy that is transferred every second. The change in the amplitude of a wave does not change its frequency. However, frequency is inversely related to the wavelength of a wave.
Best Wishes!
Answer:


Explanation:
what is the smallest crater that each of these telescopes could resolve on our moon?
For moon ;
s = 3.8 × 10 ⁸ m
y = 1.22 λs/D
where;
λ = 400 nm = 400× 10 ⁻⁹
D = 2.4 m
The smallest crater for the hubble space is calculated as follows:


For Aceribo ;
y = 1.22 λs/D
where :
λ = 75 cm = 0.75 m
D = 305 m


Answer:
f(x)=a(x - h)2 + k
Much like a linear function, k works like b in the slope-intercept formula. Like where add or subtract b would determine where the line crosses, in the linear, k determines the vertex of the parabola. If you're going to go up 2, then you need to add 2.
The h determines the movement horizontally. what you put in h determines if it moves left or right. To adjust this, you need to find the number to make the parentheses equal 0 when x equals -2 (because moving the vertex point to the left means subtraction/negatives):
x - h = 0
-2 - h = 0
-h = 2
h = -2
So the function ends up looking like:
f(x)=a(x - (-2))2 + 2
Subtracting a negative cancels the signs out to make a positive:
f(x)=a(x + 2)2 + 2Explanation:
T<span>he equation to be used here to determine the distance between two equipotential points is:
V = k * Q / r
where v is the voltage of the point, k is a constant, Q is charge of the point measured in coloumbs and r is the distance.
In this case, we can use ratio of proportions to determine the distance between the two points. in this respect,
Point 1:
V = k * Q / r = 290
r = k*Q/290 ; kQ = 290r
Point 2:
V = k * Q / R = 41
R = k*Q/41
from equation 10 kQ = 290r
R = 290/(41)= 7.07 m
The distance between the two points then is equal to 7.07 m.
</span>
Give u = start velocity
v = end velocity
v = u + at
50 = 400 + a*30
30a = -350
a = -116.67 m/
**Why the accecleration is negative number**
Because displacement, velocity, and acceleration are VECTOR QUANTITIES.
Vector Quantity must have direction.