1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11111nata11111 [884]
3 years ago
14

An object with mass 110 kg moved in outer space. When it was at location < 13, -18, -2 > its speed was 19.5 m/s. A single

constant force < 250, 390, -220 > N acted on the object while the object moved to location < 19, -23, -5 > m. What is the speed of the object at this final location
Physics
1 answer:
Serhud [2]3 years ago
6 0

Answer:

v = 21.4m/s

Explanation:

Given r1 = < 13, -18, -2 > m,

F = < 250, 390, -220 > N, r2 = < 19, -23, -5 > m

Where r1 and r2 are position vectors in space and F is the constant force vector in space.

r2 - r1 = < 19–13, -23–(-18), -5–(-2) > m

Δr = < 6, -5, -3 > m

F = m×a

a = F/m

m = 110kg (scalar quantity)

a = < 250/110, 390/110, -220/110 >

a = < 2.27, 3.55, -2 > m/s²

Since the force is constant, the acceleration is also constant. Therefore the equations of constant acceleration motion apply here.

V² = u² +2aΔr

The magnitude of the acceleration is calculated as follows

a = √(2.27² + 3.55² +(-2)²)

a = √(21.7554)

a = 4.66m/s²

Magnitude of Δr,

Δr = √(6² + (-5)² +(-3)²) = √(70) = 8.37m

Having calculated the magnitude of the acceleration and displacement, we can now calculate the final velocity.

u = initial velocity = 19.5m/s

v² = 19.5² + 2×4.66×8.37

v² = 458.25

v = √(458.25)

v = 21.4m/s

You might be interested in
Four football players are running down the field at the same speed. Player 1 weighs 180 lbs and is running toward the south goal
Serggg [28]
Player 2 because moment is mass times acceleration and since they are all going the same speed. Speed doesn't matter so the only thing that is left is mass/ weight and he has the most
7 0
3 years ago
Debido al desorden en el laboratorio un científico tiene 2 termómetros diferentes pero no sabe en qué escalas están por lo que d
just olya [345]

Answer:

La escala del termómetro ''A'' es grados Celsius.

La escala del termómetro ''B'' es grados Fahrenheit.

Explanation:

Para hallar en qué escalas están los termómetros partimos de que la mezcla a la cuál se midió su temperatura mantuvo su temperatura constante.

Esto quiere decir que los termómetros están expresando la misma temperatura pero en una escala distinta.

Sabemos que dada una temperatura en grados Celsius ''C'' si la queremos convertir a grados Fahrenheit ''F'' debemos utilizar la siguiente ecuación :

F=(\frac{9}{5})C+32 (I)

Ahora, si reemplazamos y asumimos que la temperatura de 18° es en grados Celsius, entonces si reemplazamos C=18 en la ecuación (I) deberíamos obtener F=64.4 ⇒

F=(\frac{9}{5}).(18)+32=32.4+32=64.4

Efectivamente obtenemos el valor esperado. Finalmente, corroboramos que la temperatura del termómetro ''A'' está medida en grados Celsius y la temperatura del termómetro ''B'' en grados Fahrenheit.

6 0
3 years ago
A gasoline tank has the shape of an inverted right circular cone with base radius 4 meters and height 5 meters. Gasoline is bein
RSB [31]

Answer:

h'=0.25m/s

Explanation:

In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).

So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of 8m^{3}/s. As you  may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:

V_{cone}=\frac{1}{3} \pi r^{2}h

notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.

If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:

\frac {r}{h}=\frac{4}{5}

When solving for r, we get:

r=\frac{4}{5}h

so we can substitute this into our volume of a cone formula:

V_{cone}=\frac{1}{3} \pi (\frac{4}{5}h)^{2}h

which simplifies to:

V_{cone}=\frac{1}{3} \pi (\frac{16}{25}h^{2})h

V_{cone}=\frac{16}{75} \pi h^{3}

So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:

\frac{dV}{dt}= \frac{16}{75} \pi (3)h^{2} \frac{dh}{dt}

Which simplifies to:

\frac{dV}{dt}= \frac{16}{25} \pi h^{2} \frac{dh}{dt}

So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)

So we get:

\frac{dh}{dt}= \frac{(dV/dt)(25)}{16 \pi h^{2}}

Now we can substitute the provided values into our equation. So we get:

\frac{dh}{dt}= \frac{(8m^{3}/s)(25)}{16 \pi (4m)^{2}}

so:

\frac{dh}{dt}=0.25m/s

3 0
2 years ago
A student standing on a stationary skateboard tosses a textbook with a mass of mb = 1.25 kg to a friend standing in front of him
juin [17]

Answer:

The velocity of the student has after throwing the book is 0.0345 m/s.

Explanation:

Given that,

Mass of book =1.25 kg

Combined mass = 112 kg

Velocity of book = 3.61 m/s

Angle = 31°

We need to calculate the magnitude of the velocity of the student has after throwing the book

Using conservation of momentum along horizontal  direction

m_{b}v_{b}\cos\theta= m_{c}v_{c}

v_{s}=\dfrac{m_{b}v_{b}\cos\theta}{m_{c}}

Put the value into the formula

v_{c}=\dfrac{1.25\times3.61\times\cos31}{112}

v_{c}=0.0345\ m/s

Hence, The velocity of the student has after throwing the book is 0.0345 m/s.

3 0
3 years ago
Two balls are thrown against a wall. Ball 1 has a much higher speed than ball 2.
Sunny_sXe [5.5K]

Let both the balls have the same mass equals to m.

Let v_1 and v_2 be the speed of the ball1 and the ball2 respectively, such that

v_1>v_2\;\cdots(i)

Assuming that both the balls are at the same level with respect to the ground, so let h be the height from the ground.

The total energy of ball1= Kinetic energy of ball1 + Potential energy of ball1. The Kinetic energy of any object moving with speed, v, is \frac 12 m v^2

and the potential energy is due to the change in height is mgh [where g is the acceleration due to gravity]

So, the total energy of ball1,

=\frac 12 m v_1^2 + mgh\;\cdots(ii)

and the total energy of ball1,

=\frac 12 m v_2^2 + mgh\;\cdots(iii).

Here, the potential energy for both the balls are the same, but the kinetic energy of the ball1 is higher the ball2 as the ball1 have the higher speed, refer equation (i)

So, \frac 12 m v_1^2 >\frac 12 m v_2^2

Now, from equations (ii) and (iii)

The total energy of ball1 hi higher than the total energy of ball2.

6 0
3 years ago
Other questions:
  • A crowbar is used as a lever. The effort force of 40 newtons moves 3 meters. The resistance force of 54 newtons moves 2 meters.
    13·2 answers
  • The mass of a lift is 600kg.the. The maximum tensile force that the cable supporting the lift can withstand is 7kN. Calculate th
    12·1 answer
  • A solenoid 10.0 cm in diameter and 63.3 cm long is made from copper wire of diameter 0.100 cm, with very thin insulation. The wi
    13·2 answers
  • What is the formula for the third law of newton and what does it state?​
    7·2 answers
  • A florescent light tube usually contains what?
    7·1 answer
  • suppose that a block is pulled 16 meters across a floor. what amount of work is done if the force used to drag the block is 22n
    7·1 answer
  • as you go above earths surface, the acceleration due to gravity will decrease. find the height, i meters, above the earths surfa
    12·1 answer
  • Which of the following is true about a hybrid? * A. It combines the gas-powered engine and an electric motor into one system. B.
    14·1 answer
  • A 7.40-kg object initially has 347 J of gravitational potential energy. Then an elevator lifts the object a distance of 20.6 m a
    9·1 answer
  • Would young rocks be found near a volcano?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!