A heliocentric system is a sun-centered
True is the anwser to your question
Hope this helps
Answer:
Feathers are great thermal insulators.
Explanation:
Feathers are great thermal insulators. The loose structure of down feathers traps air.
As a result, energy cannot be transmitted easily through down feathers. This means birds are insulated from cold air outside, plus their body heat doesn't escape easily either.
Human beings discovered that down feathers are good for insulation long ago. For example, documents from the 1600s show that Russian merchants sold “bird down" to the Dutch hundreds of years ago.
Today, down is used in all sorts of products, including coats, bedding, and sleeping bags, to help better insulate the user from cold weather. Down can be collected from many different types of birds, but most of today's supply comes from domestic geese.
If you have a down coat or comforter, is it all down? In the United States, laws require that products labeled “100 percent down" contain only down feathers.
If your product is labeled “down," it can contain a mixture of both down feathers and synthetic fibers. Not all down feathers are created equal, though.
Down insulation is rated on a measure called “fill power." The higher the fill power, the more the down insulates.
The highest fill-power rating — 1200 — goes to eiderdown, which comes from the Common Eider duck. Eiderdown tends to be expensive.
The question is incomplete. Here is the complete question.
Three crtaes with various contents are pulled by a force Fpull=3615N across a horizontal, frictionless roller-conveyor system.The group pf boxes accelerates at 1.516m/s2 to the right. Between each adjacent pair of boxes is a force meter that measures the magnitude of the tension in the connecting rope. Between the box of mass m1 and the box of mass m2, the force meter reads F12=1387N. Between the box of mass m2 and box of mass m3, the force meter reads F23=2304N. Assume that the ropes and force meters are massless.
(a) What is the total mass of the three boxes?
(b) What is the mass of each box?
Answer: (a) Total mass = 2384.5kg;
(b) m1 = 915kg;
m2 = 605kg;
m3 = 864.5kg;
Explanation: The image of the boxes is described in the picture below.
(a) The system is moving at a constant acceleration and with a force Fpull. Using Newton's 2nd Law:




Total mass of the system of boxes is 2384.5kg.
(b) For each mass, analyse each box and make them each a free-body diagram.
<u>For </u>
<u>:</u>
The only force acting On the
box is force of tension between 1 and 2 and as all the system is moving at a same acceleration.


= 915kg
<u>For </u>
<u>:</u>
There are two forces acting on
: tension caused by box 1 and tension caused by box 3. Positive referential is to the right (because it's the movement's direction), so force caused by 1 is opposing force caused by 3:


= 605kg
<u>For </u>
<u>:</u>


= 864.5kg
Answer:
W = 1,307 10⁶ J
Explanation:
Work is the product of force by distance, in this case it is the force of gravitational attraction between the moon (M) and the capsule (m₁)
F = G m₁ M / r²
W = ∫ F. dr
W = G m₁ M ∫ dr / r²
we integrate
W = G m₁ M (-1 / r)
We evaluate between the limits, lower r = R_ Moon and r = ∞
W = -G m₁ M (1 /∞ - 1 / R_moon)
W = G m1 M / r_moon
Body weight is
W = mg
m = W / g
The mass is constant, so we can find it with the initial data
For the capsule
m = 1000/32 = 165 / g_moon
g_moom = 165 32/1000
.g_moon = 5.28 ft / s²
I think it is easier to follow the exercise in SI system
W_capsule = 1000 pound (1 kg / 2.20 pounds)
W_capsule = 454 N
W = m_capsule g
m_capsule = W / g
m = 454 /9.8
m_capsule = 46,327 kg
Let's calculate
W = 6.67 10⁻¹¹ 46,327 7.36 10²² / 1.74 10⁶
W = 1,307 10⁶ J