The relative mass of each element can be found from the periodic table (the larger number). For instance, P2O5, P = 31.0 O = 16.0, thus the formula mass (Mr) is 2(31) + 5(16) = 142 amu (atomic mass unit). I used a not really specific periodic table. Maybe your teacher is referring to open Schoology (a website where teacher can post files or announcements to students in his or her class). Sorry if i got something mistaken.
Answer:
The entropy change for a real, irreversible process is equal to <u>zero.</u>
The correct option is<u> 'c'.</u>
Explanation:
<u>Lets look around all the given options -:</u>
(a) the entropy change for a theoretical reversible process with the same initial and final states , since the entropy change is equal and opposite in reversible process , thus this option in not correct.
(b) equal to the entropy change for the same process performed reversibly ONLY if the process can be reversed at all. Since , the change is same as well as opposite too . Therefore , this statement is also not true .
(c) zero. This option is true because We generate more entropy in an irreversible process. Because no heat moves into or out of the surroundings during the procedure, the entropy change of the surroundings is zero.
(d) impossible to tell. This option is invalid , thus incorrect .
<u>Hence , the correct option is 'c' that is zero.</u>
Answer:
the discovery will always need to be tested more where if you're investigating you should already be in a more controlled environment
Answer: 362,07 cm3
To answer this question you need to convert the lb into gram first. One lb equal to 453.592g, so: 3.6lb x 453.592gram/lb= 1632.9312gram.
Now we have mass(1632.9312g), density (4.51g/cm3). Volume is mass divided by density. The equation would be:
Volume= mass/density
Volume = 1632.9312gram / (4.51g/cm3)= 362,07 cm3
Answer:
An addition reaction
Step-by-step explanation:
In an addition reaction, two or more molecules come together to form a single product, for example,
C₂H₂ + 2Cl₂ ⟶ C₂H₂Cl₄
This reaction consists of two successive additions. The product of the first reaction becomes a reactant and adds a second molecule of Cl₂ to form C₂H₂Cl₄
C₂H₂ + Cl₂ ⟶ <em>C₂H₂Cl₂
</em>
<em><u>C₂H₂Cl₂</u></em><u> + Cl₂ ⟶ C₂H₂Cl₄
</u>
C₂H₂ + 2Cl₂ ⟶ C₂H₂Cl₄