Answer:
The runner's acceleration was 
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the velocity of an object changes by an equal amount in every equal period of time.
Being a the constant acceleration, vo the initial speed, vf the final speed, and t the time, the following relation applies:

Solving for a:

The runner speeds up from vo=5 m/s to vf=9 m/s in t=4 seconds, thus:


The runner's acceleration was 
To calculate the force of impact F, first lets calculate the acceleration a of the ball:
a=v/t where v is the velocity of the ball and t is time
a=32/0.8=40 m/s²
To get the force F we need the Newtons second law:
F=m*a where m is the mass of the ball and a is the acceleration.
F=m*a= 0.2*40 = 8 N
So the impact force is F= 8 N.
If I knew the answer I would help but I don’t know sorry
In the reaction between 1 molecule of bromine and 2 molecules of potassium chloride, there are six atoms in the products.
Let's consider the balanced equation for the reaction between 1 molecule of bromine and 2 molecules of potassium chloride. This is a single replacement reaction.
Br₂ + 2 KCl ⇒ 2 KBr + Cl₂
We obtain as products, 2 molecules of potassium bromide and 1 molecule of chlorine.
- 1 molecule of KBr has 2 atoms, so 2 molecules contribute with 4 atoms.
- 1 molecule of Cl₂ has 2 atoms.
- The 4 atoms from KBr and the 2 atoms from Cl₂ make a total of 6 atoms.
In the reaction between 1 molecule of bromine and 2 molecules of potassium chloride, there are six atoms in the products.
Learn more: brainly.com/question/21850455
The two most common units of electric energy is Watts or hertz.