Answer:
48.51ms / 174.6 km/h
Explanation:
y = 1/2 x g x t^2 v = g x t
when y = 120m
120 = 1/2 x 9.8 x t^2
t^2 = 24.49
t = 4.95s
when t = 4.95s
v = 9.8 x 4.95
v = 48.51 m/s = 174.6 km/h
I'd say its realistic. But I don't really know that sry
Ground water keept the ground at a stable level when it is gone the cavern it was in has no support and is at risk of callaps
Answer: 7.41 m/s
Explanation: By using the law of of energy, kinetic energy of the brick as it falls equals the potential energy before falling.
Kinetic energy = mv²/2, potential energy = mgh
mv²/2 = mgh
v²/2 = gh
v² = 2gh
v = √2gh
Where g = 9.8 m/s², h = 2.80m
v = √2×9.8×2.8 = 7.41 m/s
Even though the wind "tries" to flow from high pressure to low pressure, the turning of the Earth causes the air flow to turn to the right (in the Northern Hemisphere), so the jet stream flows around the air masses, rather than directly from one to the other.