Answer:
=0.855V
Explanation:
The induced voltage can be calculated using below expression
E =B x dA/dt
Where dA/dt = area
B= magnetic field = 6.90×10-5 T.
We were given speed of 885 km/h but we will need to convert to m/s for consistency of unit
speed = 885 km/h
speed = 885 x 10^3 m/hr
speed = 885 x 10^3/60 x60 m/s
speed = 245.8 m/s
If The aircraft wing sweep out" an area
at t= 50.4seconds then we have;
dA/dt = 50.4 x 245.8
= 123388.32m^2/s
Then from the expression above
E =B x dA/dt substitute the values of each parameters, we have
E = 6.90 x 10^-5 x 12388.32 V
E =0.855V
Hence, the average induced voltage between the tips of the wings is =0.855V
Answer:
1160 ohm
Explanation:
We are given that
R'=580 ohm
Current=3 I
We have to find the resistance of the circuit.
Let R be the resistance of circuit.
In parallel

Using the formula


In parallel combination,Potential difference across each resistance remains same.

Using the formula




A). balanced force
b). unbalanced force
There's no such thing as either of these. A group of two or more forces can be balanced or unbalanced. A single force can't be.
c). gravitational force ... doesn't cause an object to move in a circle;
Drop a stone from the roof of a tall building and watch it fall.
It goes straight down, not in a circle.
d). centripetal force ... force directed toward the center of a circle,
causes an object to move in a circle.
Answer:
14.4 m/s
Explanation:
mass of Anna (Ma) = 68 kg
speed of Anna (Va) = 17 m/s
mass of SandraDay (Ms) = 76 kg
speed of SandraDay (Vs) = 12 m/s
We can find their speed (V) immediately after collision from the conservation of momentum where
(Ma x Va) + (Ms + Vs) = (Ma + Ms) x V
where V = speed immediately after collision
(68 x 17) + (76 + 12) = (68 + 76) x V
2068 = 144 V
V = 2068 / 144 = 14.4 m/s