The highest elevation reached by the ball in its trajectory is 16.4 m.
To find the answer, we need to know about the maximum height reached in a projectile.
What's the mathematical expression of the maximum height reached in a projectile motion?
- The maximum height= U²× sin²(θ)/g
- U= initial velocity, θ= angle of projectile with horizontal and g= acceleration due to gravity
What's the maximum height reached by a block that is thrown with an initial velocity of 30.0 m/s at an angle of 25° above the horizontal?
- Here, U = 30.0 m/s and θ= 25°
- Maximum height= 30²× sin²(25)/9.8
= 16.4m
Thus, we can conclude that the highest elevation reached by the ball in its trajectory is 16.4 m.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ4
I’m lost at this question, sorry but I would’ve help !
By using third law of equation of motion, the final velocity V of the rubber puck is 8.5 m/s
Given that a hockey player hits a rubber puck from one side of the rink to the other. The parameters given are:
mass m = 0.170 kg
initial speed u = 6 m/s.
Distance covered s = 61 m
To calculate how fast the puck is moving when it hits the far wall means we are to calculate final speed V
To do this, let us first calculate the kinetic energy at which the ball move.
K.E = 1/2m
K.E = 1/2 x 0.17 x 
K.E = 3.06 J
The work done on the ball is equal to the kinetic energy. That is,
W = K.E
But work done = Force x distance
F x S = K.E
F x 61 = 3.06
F = 3.06/61
F = 0.05 N
From here, we can calculate the acceleration of the ball from Newton second law
F = ma
0.05 = 0.17a
a = 0.05/0.17
a = 0.3 m/
To calculate the final velocity, let us use third equation of motion.
=
+ 2as
=
+ 2 x 0.3 x 61
= 36 + 36
= 72
V = 
V = 8.485 m/s
Therefore, the puck is moving at the rate of 8.5 m/s (approximately) when it hits the far wall.
Learn more about dynamics here: brainly.com/question/402617
Answer:
Explanation:
An insulator. You can see ceramic insulators on telephone poles and power poles if you look carefully. If you live in a city, somewhere in that city is a power station. The insulators are huge. They have to be. The currents are very large in many cases.