The answer is C ( The evaporation rate of water increases at all temperatures causing an increase in volume.)
Answer:
Biomass to an Energy source
Explanation:
Researchers have developed a new catalyst that directly converts cellulose, the most common form of biomass, into ethylene glycol, an important intermediate product for chemical industry. Alternatives to fossil fuels and natural gas as carbon sources and fuel are in demand.
Answer:
Overall reaction
H2(g) + 2ICI(g) -----> I2(g) +2HCl(g)
Overall Rate = k1[H2] [ICl]
Explanation:
Overall reaction
H2(g) + 2ICI(g) -----> I2(g) +2HCl(g)
The overall reaction is the sum of the two two reactions shown in the question. After the two reactions are summed up properly, this overall reaction equation his obtained.
Since K1<<K2 it means that step 1 is slower than step 2. Recall that the rate if reaction depends on the slowest step of the reaction. Hence
Overall Rate = k1[H2] [ICl]
Answer:
Explanation:
It is easier if you convert the kelvin temperature into Celsius degrees:
- ºC = T - 273.15 = 150 - 273.15 = -123.15ºC
Now, you know that that is a very cold temperature. Thus, may be the oxygen is not gas any more but it changed to liquid . . . or solid?
You must search for the boiling point and melting (freezing) point of oxygen in tables or the internet. At standard pressure (about 1 atm) they are:
- Melting point: −218.79 °C,
- Boiling point: −182.962 °C
That means that:
- below -218.79ºC oxygen is solid (not our case).
- between -218.79ºC and -182.962ºC oxygen is liquid (not our case)
- over -182.962ºC oxygen is a gas. This is our case, because -123.15ºC is a higher temperature than -182.962ºC.
Hence, <em>the state of matter of oxygen at 150K</em>, and standard pressure, is gas.
Last option:
CO2 (g) + H2O (l) -> H2CO3 (aq)
In the brackets:
g = gas,
l = liquid,
s = solid,
aq = aqueous.
So,
CO2 (g) = carbon dioxide gas
H2O (l) = liquid water
H2CO3 (aq) = aqueous carbonic acid