Answer:
I think they are all correct
Answer:
Root mean squared velocity is different.
Explanation:
Hello!
In this case, since we have a mixture of oxygen and nitrogen at STP, which is defined as a condition whereas T = 298 K and P = 1 atm, we can infer that these gases have the same temperature, pressure, volume and moles but a different root mean squared velocity according to the following formula:

Since they both have a different molar mass (MM), nitrogen (28.02 g/mol) and oxygen (32.02 g/mol), thus we infer that nitrogen would have a higher root mean squared velocity as its molar mass is less than that of oxygen.
Best regards!
1. mol ratio of Al(NO₃)₃ : Na₂CO₃ = 2 : 3
2. Na₂CO₃ as a limiting reactant
<h3>Further explanation</h3>
Given
Reaction
2 Al(NO₃)₃ + 3 Na₂CO₃ → Al₂(CO₃)₃ + 6 NaNO₃
Required
mol ratio
Limiting reactant
Solution
The reaction coefficient in the chemical equation shows the mole ratio of the components of the compound involved in the reaction (reactants and products)
1. From the equation mol ratio of Al(NO₃)₃ : Na₂CO₃ = 2 : 3
2. mol : coefficient of Al(NO₃)₃ : Na₂CO₃ = 2 mole/2 : 2 mole/3 = 1 : 0.67
Na₂CO₃ as a limiting reactant (smaller)
From the reaction between Cu and HNO₃, the formed gas is NO₂ instead of NO₃. Hence the correct balanced equation would be,
Cu(s) + 4HNO₃(aq) → Cu(NO₃)₂(aq) + 2NO₂(g) + 2H₂O<span>(l)
Here, Cu goes to </span>Cu(NO₃)₂ by changing its oxidation number from 0 to +2 while NO₃⁻ goes to NO₂ by reducing its oxidation state from +5 to +4 . Hence Cu is oxidized by HNO₃ in the reaction.
Answer:
B.) 129.9 grams
Explanation:
To find the mass, you need to use the following equation:
Q = mcΔT
In this equation,
-----> Q = energy (J)
-----> m = mass (g)
-----> c = specific heat (J/g°C)
-----> ΔT = change in temperature (°C)
The specific heat of copper is 0.385 J/g°C. Knowing this, you can plug the given values into the equation and simplify to isolate "m".
Q = mcΔT <----- Equation
5000 J = m(0.385 J/g°C)(200 °C - 100 °C) <----- Insert values
5000 J = m(0.385 J/g°C)(100) <----- Subtract
5000 J = m(38.5) <----- Multiply 0.385 and 100
129.9 = m <----- Divide both sides by 38.5