Sr has an atomic number of 38 so we'll start there.
The closest noble gas is Kr with an atomic number of 36 so it'll look like this:
[Kr]5s^2.
Answer:
0.862 J/gºC
Explanation:
The following data were obtained from the question:
Mass of metal (Mₘ) = 50 g
Initial temperature of metal (Tₘ) = 100 °C
Mass of water (Mᵥᵥ) = 400 g
Initial temperature of water (Tᵥᵥ) = 20 °C
Equilibrium temperature (Tₑ) = 22 °C
Specific heat capacity of water (Cᵥᵥ) = 4.2 J/gºC
Specific heat capacity of metal (Cₘ) =?
The specific heat capacity of the metal can be obtained as follow:
Heat lost by metal = MₘCₘ(Tₘ – Tₑ)
= 50 × Cₘ × (100 – 22)
= 50 × Cₘ × 78
= 3900 × Cₘ
Heat gained by water = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)
= 400 × 4.2 × (22 – 20)
= 400 × 4.2 × 2
= 3360 J
Heat lost by metal = Heat gained by water
3900 × Cₘ = 3360
Divide both side by 3900
Cₘ = 3360 / 3900
Cₘ = 0.862 J/gºC
Therefore, the specific heat capacity of the metal is 0.862 J/gºC
They both can form a solution.
Answer:
Because the value of K is huge.
Explanation:
The tautomer is a kind of isomer in which exist an equilibrium between a ketone and an enol, or between an aldehyde and an enol. So, in the enolization, the ketone is the reactant and the enol is the product.
The equilibrium reaction can be characterized by an equilibrium constant, which is the ratio of the concentration of the products by the concentration of the reactants.
Because the constant K is extremely large (10¹³) we can conclude that the concentration of the product will be greater than the concentration of the reactant, in the equilibrium. It means that the concentration of the enol will be greater.
So, the ketone is unstable and forms in a great amount the more stable product, the enol.
Answer:Osmotic pressure is the minimum amount of pressure a solution must exert in order to prevent from crossing a barrier by osmosis. Solute molecules have difficulty crossing semipermeable membranes, so the more solutes that are in a solution, the higher the osmotic pressure will be. Between 30% sucrose and 60% sucrose, 60% sucrose will have a greater osmotic pressure than 30% because it has a higher percentage of solutes. However, since sucrose has a higher potential to cross semipermeable membranes and is more absorbable than magnesium sulfate, magnesium sulfate would have a higher osmotic pressure than 60% sucrose even though 60% sucrose has higher molecules.
Explanation: