Answer:
no matter is destroyed or created, it merely changes form. In terms of atoms and bonds, there will be the same amount of atoms at the beginning of an experiment as the amount of atoms at the end of experiment. All that will have happened, is that during the reaction, bonds will have been broken and formed making new compounds. However, the amount of atoms remains exactly the same because matter can not be created or destroyed
Hope this helps!
Answer:
The decomposition of ethane is 153.344 times much faster at 625°C than at 525°C.
Explanation:
According to the Arrhenius equation,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate of reaction at 
= rate of reaction at 
= activation energy of the reaction
R = gas constant = 8.314 J/K mol


![\log (\frac{K_2}{K_1})=\frac{300,000 J/mol}{2.303\times 8.314 J/K mol}[\frac{1}{798.15 K}-\frac{1}{898.15 K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7B300%2C000%20J%2Fmol%7D%7B2.303%5Ctimes%208.314%20J%2FK%20mol%7D%5B%5Cfrac%7B1%7D%7B798.15%20K%7D-%5Cfrac%7B1%7D%7B898.15%20K%7D%5D)


The decomposition of ethane is 153.344 times much faster at 625°C than at 525°C.
The tool to measure the liquid is a measuring cylinder.
Answer:
F2 is the limiting reactant
27.6 grams of NaF is produced.
Explanation:
Balance the equation first.
2Na+ F2 ---> 2NaF
To find the limiting reactant, solve for how much NaF can be produced with Na and F2
12.5g F2 x (1 mole F2/ 38.00 grams F2)x (2 mole NaF/ 1 mole F2)
=0.658 moles NaF
16.2g Na x (1 mole Na/ 22.99 grams Na)x (2 mole NaF/ 2 mole Na)
=0.705 moles NaF
Since F2 produced the least NaF, F2 is the limiting reactant.
Now, to find how much NaF there is, use the moles solved above with F2 as the limiting reactant.
0.658 moles NaF x (41.99 grams NaF/ 1 mole NaF)= 27.6 moles NaF
27.6 moles of NaF would be theoretically produced.