Answer:
Percent error = 12.5%
Explanation:
In a measurement you can find percent error following the formula:
Percent error = |Measured value - Accepted Value| / Acepted value * 100
Based on the data of the problem, accepted value is 22.4L and the measured Value (Value of Sara) was 19.6L.
Replacing:
Percent error = |Measured value - Accepted Value| / Acepted value * 100
Percent error = |19.6L - 22.4L| / 22.4L * 100
Percent error = |-2.8L| / 22.4L * 100
Percent error = 2.8L / 22.4L * 100
Percent error = 12.5%
Sorry, I won't understand your words.
Answer:
The maximum mass of carbon dioxide that could be produced by the chemical reaction is 70.6gCO_{2}
Explanation:
1. Write down the balanced chemical reaction:

2. Find the limiting reagent:
- First calculate the number of moles of hexane and oxygen with the mass given by the problem.
For the hexane:

For the oxygen:

- Then divide the number of moles between the stoichiometric coefficient:
For the hexane:

For the oxygen:

- As the fraction for the oxygen is the smallest, the oxygen is the limiting reagent.
3. Calculate the maximum mass of carbon dioxide that could be produced by the chemical reaction:
The calculations must be done with the limiting reagent, that is the oxygen.

In order to determine whether a bond is ionic or covalent, you need to know whether or not it is completely composed of nonmetal atoms or both metal and nonmetal ions.
Barium is a metal and Oxygen is a nonmetal, therefore there is no possible way they could bond unless they were attracted to opposite charges. Specifically, only if Barium becomes a cation and Oxygen becomes an anion then could they bond.
Now cation and anion both have the word "ion" in them, so therefore it must be an ionic bond.
Now we need to know the definition of a bond. A bond is formed when two elements are joined together by sharing their valence electrons.
Therefore, your answer should be:
Ionic, because valence electrons are shared.
In this compound (Phosgene) the central atom (carbon is Sp² Hybridized).
Sp, Sp² and Sp³ can be calculated very simply by doing three steps,
Step 1:
Assume triple bond and double bond as one bond and assign s or p to it. In this example carbon double bond oxygen is considered once and let suppose it is s. Now we are having our s.
Step 2:
Count lone pair of electron, each lone pair counts for s and p. In this case there is no lone pair of electron on carbon, so not included.
Step 3:
Count single bonds for s and p. As we have already assigned s to the double bond, now one p for one single bond, and other p for the other single bond.
Result:
So, we counted 1 s for double bond, 1 p for one single and other p for second single bond. As a whole we got,
Sp²
Practice:
You can practice for hybridization of Oxygen in this molecule. Oxygen has 2 lone pair of electrons. (Hint: Sp² Hybridization)