Answer:
The equilibrium partial pressure of O2 is 0.545 atm
Explanation:
Step 1: Data given
Partial pressure of SO2 = 0.409 atm
Partial pressure of O2 = 0.601 atm
At equilibrium, the partial pressure of SO2 was 0.297 atm.
Step 2: The balanced equation
2SO2 + O2 ⇆ 2SO3
Step 3: The initial pressure
pSO2 = 0.409 atm
pO2 = 0.601 atm
pSO3 = 0 atm
Step 4: Calculate the pressure at the equilibrium
pSO2 = 0.409 - 2X atm
pO2 = 0.601 - X atm
pSO3 = 2X
pSO2 = 0.409 - 2X atm = 0.297
X = 0.056 atm
pO2 = 0.601 - 0.056 = 0.545 atm
pSO3 = 2*0.056 = 0.112 atm
Step 5: Calculate Kp
Kp = (pSO3)²/((pO2)*(pSO2)²)
Kp = (0.112²) / (0.545 * 0.297²)
Kp = 0.261
The equilibrium partial pressure of O2 is 0.545 atm
C. 1.0 M Al2O3 would be the best answer
Photosynthesis
Hope this helps!
Answer:
it is a replacement reaction
Answer:
Yes
Explanation:
A molecule has a center of symmetry when, for any atom in the molecule, an identical atom exists diametrically opposite this center an equal distance from it(Wikipedia).
A center of symmetry is said to exist in a molecule when reflection of all parts of the molecule through the center of symmetry produces an indistinguishable configuration(Housecroeft and Sharpe,2012)
Obviously, the Cl2 molecule has a center of symmetry, hence it is symmetrical. Reflection of the molecules through its center of symmetry produces an indistinguishable configuration.