1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nordsb [41]
4 years ago
10

Baseball player a bunts the ball by hitting it in such a way that it acquires an initial velocity of 2.4 m/s parallel to the gro

und. upon contact with the bat the ball is 1.2 m above the ground. player b wishes to duplicate this bunt, in so far as he also wants to give the ball a velocity parallel to the ground and have his ball travel the same horizontal distance as player a's ball does. however, player b hits the ball when it is 1.6 m above the ground. what is the magnitude of the initial velocity that player b's ball must be given
Physics
1 answer:
LUCKY_DIMON [66]4 years ago
5 0

Let \mathbf r_A denote the position vector of the ball hit by player A. Then this vector has components

\begin{cases}r_{Ax}=\left(2.4\,\frac{\mathrm m}{\mathrm s}\right)t\\r_{Ay}=1.2\,\mathrm m-\frac12gt^2\end{cases}

where g=9.8\,\dfrac{\mathrm m}{\mathrm s^2} is the magnitude of the acceleration due to gravity. Use the vertical component r_{Ay} to find the time at which ball A reaches the ground:

1.2\,\mathrm m-\dfrac12\left(9.8\,\dfrac{\mathrm m}{\mathrm s^2}\right)t^2=0\implies t=0.49\,\mathrm s

The horizontal position of the ball after 0.49 seconds is

\left(2.4\,\dfrac{\mathrm m}{\mathrm s}\right)(0.49\,\mathrm s)=12\,\mathrm m

So player B wants to apply a velocity such that the ball travels a distance of about 12 meters from where it is hit. The position vector \mathbf r_B of the ball hit by player B has

\begin{cases}r_{Bx}=v_0t\\r_{By}=1.6\,\mathrm m-\frac12gt^2\end{cases}

Again, we solve for the time it takes the ball to reach the ground:

1.6\,\mathrm m-\dfrac12\left(9.8\,\dfrac{\mathrm m}{\mathrm s^2}\right)t^2=0\implies t=0.57\,\mathrm s

After this time, we expect a horizontal displacement of 12 meters, so that v_0 satisfies

v_0(0.57\,\mathrm s)=12\,\mathrm m

\implies v_0=21\,\dfrac{\mathrm m}{\mathrm s}

You might be interested in
The purpose of striking the ball in a volleyball game is to: 1. Place the ball in motion 2. Change the direction of the ball's m
zhenek [66]

Answer:

4. All of the above

Explanation:

The purpose of striking the ball in a volleyball game:

From the serve you could state that you need to place the ball in motion.

When returning a shot of, you normally want to change the direction of the ball's motion.

During a dropshot, you purposely want to slow down the ball's motion.

The correct answer must be all of the above.

8 0
3 years ago
Sports managers have the potential to earn more than a million dollars per year.<br> True<br> false
andriy [413]

Answer:

true

Explanation:

hope this helped!

4 0
3 years ago
A ball was dropped from a height of 10 feet. Each time it hits the ground, it bounces 4/5 of its previous height. Find the total
Shtirlitz [24]

Answer:

d = 90 ft

Explanation:

As we know that after each bounce it reaches to 4/5 times of initial height

so we can say

h_2 = \frac{4}{5}h

so the distance covered is given as

d = h + 2(\frac{4}{5}h) + 2(\frac{4}{5})^2h + 2(\frac{4}{5})^3h........

here we know that

h = 10 feet

d = h + 2(\frac{4}{5}h)(1 + \frac{4}{5} + (\frac{4}{5})^2 + ...........)

d = 10 + 2(\frac{4}{5}(10))(\frac{1}{1 - \frac{4}{5}})

d = 90 ft

8 0
3 years ago
A spring stretches 0.150 m when a 0.30 kg mass is hung from it. The spring is then stretched an additional 0.100 m from this equ
DochEvi [55]

Answer:

a)  k=19.6N/m

b)  V_m=0.81m/s

c)  a_m=6.561m/s^2

d)  K.E=0.096J

e)  T=0.78sec &F=1.29sec

f)   mx'' + kx' =0

Explanation:

From the question we are told that:

Stretch Length L=0.150m

Mass m=0.30kg

Total stretch lengthL_t=0.150+0.100=>0.25

a)

Generally the equation for Force F on the spring is mathematically given by

F=-km\\\\k=F/m\\\\k=\frac{m*g}{x}\\\\k=\frac{0.30*9.8}{0.15}

k=19.6N/m

b)Generally the equation for Max Velocity of Mass on the spring is mathematically given by

V_m=A\omega

Where

A=Amplitude

A=0.100m

And

\omega=angulat Velocity\\\\\omega=\sqrt{\frac{k}{m}}\\\\\omega=\sqrt{\frac{19.6}{0.3}}\\\\\omega=8.1rad/s

Therefore

V_m=A\omega\\\\V_m=8.1*0.1

V_m=0.81m/s

c)

Generally the equation for Max Acceleration of Mass on the spring is mathematically given by

a_m=\omega^2A

a_m=8.1^2*0.1

a_m=6.561m/s^2

d)

Generally the equation for Total mechanical energy of Mass on the spring is mathematically given by

K.E=\frac{1}{2}mv^2

K.E=\frac{1}{2}*0.3*0.8^2

K.E=0.096J

e)

Generally the equation for  the period T is mathematically given by

\omega=\frac{2\pi}{T}

T=\frac{2*3.142}{8.1}

T=0.78sec

Generally the equation for  the Frequency is mathematically given by

F=\frac{1}{T}

F=1.29sec

f)

Generally the Equation of time-dependent vertical position of the mass is mathematically given by

mx'' + kx' =0

Where

'= signify order of differentiation

7 0
3 years ago
Which of Newton's motion laws BEST explains WHY a rock falls when it is dropped from a bridge?
erma4kov [3.2K]
It’s A because it stays in motion whenever you drop it
4 0
3 years ago
Read 2 more answers
Other questions:
  • A soccer ball takes 20s to roll 10 m. what is the speed of the soccer ball?
    11·1 answer
  • Please help do not guess
    10·1 answer
  • HALP MEH! 50 PTS!!!!
    12·2 answers
  • The small increase in global oil production coupled with an increased demand for those resources leads to _______.
    15·2 answers
  • A 2 kg stone is tied to a 0.5 m string and swung around a circle at a constant angular velocity of 12 rad/s. the angular momentu
    15·1 answer
  • 1. Describe the motion of an object with positive velocity and negative acceleration.2. Describe the motion of an object with ne
    11·1 answer
  • Which of these experiments would make use of qualitative data?
    7·1 answer
  • At point A in a Carnot cycle, 2.34 mol of a monatomic ideal gas has a pressure of 1 400 kPa, a volume of 10.0 L, and a temperatu
    6·1 answer
  • A child weighing 200 N is being held back in a swing by a horizontal force of 125 N, as shown in the image. What is the tension
    10·1 answer
  • Como se representa un intervalo de tiempo
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!