To develop this problem we will apply the concepts related to the potential energy per unit volume for which we will obtain an energy density relationship that can be related to the electric field. From this formula it will be possible to find the electric field required in the problem. Our values are given as
The potential energy, 
The volume, 
The potential energy per unit volume is defined as the energy density.



The energy density related with electric field is given by

Here, the permitivity of the free space is

Therefore, rerranging to find the electric field strength we have,



Therefore the electric field is 2.21V/m
Let
his and skateboard's combined mass is x
we know
F1=-F2
0.5kg*10m/s=-0.05m/s xkg
5=0.05x(minus cancel with the m/s as it represented the opposite direction of velocity and now there is no velocity in this equation.. so minus is avoidable. and the kgs cancel out)
x=10
so their combined mass is a 100 kg.. (I hope I didn't mess thing up for you)
work done is product of force and displacement of point of application of force
so here we have to check the product of force and displacement both
Now we will put the least to maximum work in the following order
1. -A man exerts strenuous effort in pushing a stationary wall
2. -A flea pushes a speck of dirt 1 cm
3. -A farmer pushes a 2 kg wheelbarrow 20 m
4. -A cannon launches a 3 kg cannonball a distance of 200
5. -A 2000 kg car travels 400 m down a road
6. -Space shuttle Atlantis launches from the ground into near-Earth orbit
Thermal energy quantifies the amount of heat present in the body and is calculated through the equation,
H = mcpdT
where H is the heat, m is the mass, cp is the specific heat, and dT is the temperature difference. If all things are constant, and the thermal energy is halved then, dT should also be reduced to half.