The scale in N, reading if the elevator moves upward at a constant speed of 1.5 m/s^2 is 862.5 N.
weight of man = 75kg
speed of elevator, a = 1.5
So, the scale reading in the elevator is greater than his 862.5 N weight. This indicates that the person is being propelled upward by the scale, which it must do in order to do so, with a force larger than his weight. According to what you experience in quickly accelerating or slowly moving elevators, it is obvious that the faster the elevator acceleration, the greater the scale reading.
Speed can be defines as the pace at which the position of an object changes in any direction. Since speed simply has a direction and no magnitude, it is a scalar quantity.
Learn more about speed here:-
brainly.com/question/19127881
#SPJ4
Answer:
h = 3.3 m (Look at the explanation below, please)
Explanation:
This question has to do with kinetic and potential energy. At the beginning (time of launch), there is no potential energy- we assume it starts from the ground. There, is, however, kinetic energy
Kinetic energy = m
Plug in the numbers = (4.0)()
Solve = 2(64) = 128 J
Now, since we know that the mechanical energy of a system always remains constant in the absence of outside forces (there is no outside force here), we can deduce that the kinetic energy at the bottom is equal to the potential energy at the top. Look at the diagram I have attached.
Potential energy = mgh = (4.0)(9.8)(h) = 39.2(h)
Kinetic energy = Potential Energy
128 J = 39.2h
h = 3.26 m
h= 3.3 m (because of significant figures)
The magnitude of the force that the beam exerts on the hi.nge will be,261.12N.
To find the answer, we need to know about the tension.
<h3>How to find the magnitude of the force that the beam exerts on the hi.nge?</h3>
- Let's draw the free body diagram of the system using the given data.
- From the diagram, we have to find the magnitude of the force that the beam exerts on the hi.nge.
- For that, it is given that the horizontal component of force is equal to the 86.62N, which is same as that of the horizontal component of normal reaction that exerts by the beam on the hi.nge.
- We have to find the vertical component of normal reaction that exerts by the beam on the hi.nge. For this, we have to equate the total force in the vertical direction.
- To find Ny, we need to find the tension T.
- For this, we can equate the net horizontal force.
- Thus, the vertical component of normal reaction that exerts by the beam on the hi.nge become,
- Thus, the magnitude of the force that the beam exerts on the hi.nge will be,
Thus, we can conclude that, the magnitude of the force that the beam exerts on the hi.nge is 261.12N.
Learn more about the tension here:
brainly.com/question/28106871
#SPJ1