Hey
The formula of kinetic energy is 1/2mv^2
So it depends on mass and velocity
As mass increases , kinetic energy increase .
So option b , the first rider had more mass is correct z
To solve this problem we will apply the concepts of equilibrium and Newton's second law.
According to the description given, it is under constant ascending acceleration, and the balance of the forces corresponding to the tension of the rope and the weight of the elevator must be equal to said acceleration. So


Here,
T = Tension
m = Mass
g = Gravitational Acceleration
a = Acceleration (upward)
Rearranging to find T,



Therefore the tension force in the cable is 10290.15N
Radiation damages the cells that make up the human body, it can even cause cancer
Answer:
x ’= 1,735 m, measured from the far left
Explanation:
For the system to be in equilibrium, the law of rotational equilibrium must be fulfilled.
Let's fix a reference system located at the point of rotation and that the anticlockwise rotations have been positive
They tell us that we have a mass (m1) on the left side and another mass (M2) on the right side,
the mass that is at the left end x = 1.2 m measured from the pivot point, the mass of the right side is at a distance x and the weight of the body that is located at the geometric center of the bar
x_{cm} = 1.2 -1
x_ {cm} = 0.2 m
Σ τ = 0
w₁ 1.2 + mg 0.2 - W₂ x = 0
x =
x = 
let's calculate
x =
2.9 1.2 + 4 0.2 / 8
x = 0.535 m
measured from the pivot point
measured from the far left is
x’= 1,2 + x
x'= 1.2 + 0.535
x ’= 1,735 m
Answer:

Explanation:
R = Horizontal range of projectile = 75 m
v = Velocity of projectile = 37 m/s
g = Acceleration due to gravity = 
Horizontal range is given by

The angle at which the arrow is to be released is
.