Answer:
<u>Assuming b = 9.3i + 9.5j</u> <em>(b = 931 + 9.5 is wrong):</em>
a) a×b = 34.27k
b) a·b = 128.43
c) (a + b)·b = 305.17
d) The component of a along the direction of b = 9.66
Explanation:
<u>Assuming b = 9.3i + 9.5j</u> <em>(b = 931 + 9.5 is wrong)</em> we can proceed as follows:
a) The vectorial product, a×b is:

b) The escalar product a·b is:

c) <u>Asumming (a</u><u> </u><u>+ b)·b</u> <em>instead a+b·b</em> we have:
![(a + b)\cdot b = [(8.6 + 9.3)i + (5.1 + 9.5)j]\cdot (9.3i + 9.5j) = (17.9i + 14.6j)\cdot (9.3i + 9.5j) = 305.17](https://tex.z-dn.net/?f=%28a%20%2B%20b%29%5Ccdot%20b%20%3D%20%5B%288.6%20%2B%209.3%29i%20%2B%20%285.1%20%2B%209.5%29j%5D%5Ccdot%20%289.3i%20%2B%209.5j%29%20%3D%20%2817.9i%20%2B%2014.6j%29%5Ccdot%20%289.3i%20%2B%209.5j%29%20%3D%20305.17)
d) The component of a along the direction of b is:

I hope it helps you!
Answer:
A- Martin brings his friends home to meet grandpa.
Explanation:
took the test.
Given Information:
Wavelength of the red laser = λr = 632.8 nm
Distance between bright fringes due to red laser = yr = 5 mm
Distance between bright fringes due to laser pointer = yp = 5.14 mm
Required Information:
Wavelength of the laser pointer = λp = ?
Answer:
Wavelength of the laser pointer = λp = ?
Explanation:
The wavelength of the monochromatic light can be found using young's double slits formula,
y = Dλ/d
y/λ = D/d
Where
λ is the wavelength
y is the distance between bright fringes.
d is the double slit separation distance
D is the distance from the slits to the screen
For the red laser,
yr/λr = D/d
For the laser pointer,
yp/λp = D/d
Equating both equations yields,
yr/λr = yp/λp
Re-arrange for λp
λp = yp*λr/yr
λp = (5*632.8)/5.14
λp = 615.56 nm
Therefore, the wavelength of the small laser pointer is 615.56 nm.
If you were given distance & period of time, you would be able to calculate the speed.
Hope this helps!