Answer:
The behavior of droplets trapped in geometric structures is essential to droplet manipulation applications such as for droplet transport. Here we show that directional droplet movement can be realized by a V-shaped groove with the movement direction controlled by adjusting the surface wettability of the groove inner wall and the cross sectional angle of the groove. Experiments and analyses show that a droplet in a superhydrophobic groove translates from the immersed state to the suspended state as the cross sectional angle of the groove decreases and the suspended droplet departs from the groove bottom as the droplet volume increases. We also demonstrate that this simple grooved structure can be used to separate a water-oil mixture and generate droplets with the desired sizes. The structural effect actuated droplet movements provide a controllable droplet transport method which can be used in a wide range of droplet manipulation applications.
Explanation:
BOOM NOW I WINNNNNNNNNNNn
<span>to preserve foods, dye fabric, and DE-ice roads i hopes this helps
</span>
The amount of heat energy required to raise the temperature of a unit mass of a material to one degree is called D. its heat capacity.
The relationship of the heat when applied to the object and the change in temperature of the object when heat is being applied is directly proportional to each other. This means that when heat is applied to the object, the temperature of the object increases and when heat is not applied to the object, the temperature of the object decreases.