Answer: 287.8 cm3
Explanation:
Given that:
Initial volume of gas V1 = 350 cm3
Initial pressure of gas P1 = 740 mmHg
New volume V2 = ?
New pressure P2 = 900 mmHg
Since, pressure and volume are involved while temperature is constant, apply the formula for Boyle's law
P1V1 = P2V2
740 mmHg x 350 cm3 = 900mmHg x V2
V2 = (740 mmHg x 350 cm3) /900mmHg
V2 = 259000 mmHg cm3 / 900mmHg
V2 = 287.8 cm3
Thus, the gas will occupy 287.8 cubic centimeters at the new pressure.
We can change a gas to a liquid by INCREASING the temperature and DECREASING the pressure
Answer:
4.67M
Explanation:
The concentration of methanol (CH3OH) can be calculated using the following:
Molarity (M) = number of moles(n)/volume(v)
However, mole is not given. It can be obtained by using:
Mole = mass / molar mass
Where; mass = 34.4g
Molar mass (MM) of CH3OH is:
= 12 + 1(3) + 16 + 1
= 12 + 3 + 17
= 32g/mol
mole = 34.4/32
mole = 1.075mol
The volume needs to be converted to L by dividing by 1000
230mL = 230/1000
= 0.230L
Molarity = mol/volume
Molarity = 1.075/0.230
Molarity = 4.6739
Molarity = 4.67M
The concentration of CH3OH in solution is 4.67M
1 wavelength, 2 crest, 3 trough, 4 wave height <3
High temperature and pressure produce the highest rate of reaction. However, this must be balanced with the high cost of the energy needed to maintain these conditions. Catalysts increase the rate of reaction without affecting the yield. This can help create processes which work well even at lower temperatures.
I hope this helps you.