Answer:
Heat transfer = Q = 62341.6 J
Explanation:
Given data:
Heat transfer = ?
Mass of water = 50.0 g
Initial temperature = 30.0°C
Final temperature = 55.0°C
Specific heat capacity of water = 4.184 J/g.K
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55.0°C - 30.0°C
ΔT = 25°C (25+273= 298 K)
Q = 50.0 g × 4.184 J/g.K ×298 K
Q = 62341.6 J
They would most likely get sick. Or suffer from organ failure. When one part of your body doesn’t work it causes a weakness, making you more susceptible to sicknesses.
The answer is the 3rd one
Answer:
MgCl2 > C4H9OH > CH4 > C3H8.
Explanation:
Alkanes do not form hydrogen bonds and are insoluble in polar solvents e.g water. The hydrogen bonds between water molecules are move away from an alkane molecule and this worsens as their Carbon chain / molecular weight increases.
MgCl2 is soluble in water. Water essentially breaks down the ionic crystal lattice and the resulting solution is slightly basic.
Alcohols are generally soluble in water and this is because of the -OH group and its ability to form hydrogen bonds with water molecules. As applied to alkanes, as the carbon chain in the alkyl group increases, the solubility decreases.
From the most soluble to the least soluble,
MgCl2 > C4H9OH > CH4 > C3H8.
Answer:
See explanation
Explanation:
The third law of thermodynamics states that "the entropy of a perfect crystal of a pure substance approaches zero as the temperature approaches zero" (Wikipedia).
One example of the third law of thermodynamics has to do with steam. Steam is gaseous water. Since it is a gas, its molecules are free to move around therefore its entropy is high. When the temperature of the steam is decreased below 100 degrees, the molecules of steam loose energy and turn into liquid water and do not move as freely as they did in the gaseous state. If the temperature is further decreased to yield ice at zero degrees, the molecules of water are "frozen" in their positions and the entropy of the system decreases to zero.
Also, the ions in ionic crystal solids move around when the substance is in solution or in molten state hence the substance conducts electricity. When the ionic substance is in solid state, the ions do not move about and the entropy of the solid system tends towards zero.