Answer:
0.01917 m^3/kg.
Explanation:
Given:
P = 15 MPa
= 1.5 × 10^4 kPa
T = 350 °C
= 350 + 273
= 623 K
Molar mass of water, m = (2 × 1) + 16
= 18 g/mol
= 0.018 kg/mol
R = 0.4615 kPa·m3/kg·K
Using ideal gas equation,
P × V = n × R × T
But n = mass/molar mass
V = (R × T)/P
V/M = (R × T)/P × m
= (0.4615 × 623)/1.5 × 10^4
= 0.01917 m^3/kg.
If an organism reproduces quickly, its population can evolve faster.
Answer:
"Avogadro's law is an experimental gas law relating the volume of a gas to the amount of substance of gas present. The law is a specific case of the ideal gas law. A modern statement is: Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules."
3rd one:
it is very reactive because it does not have a full Valence shell.
this is because it's in group 1 so it has one electron in its outer shell, and it wants to have a full outer shell ( which it can gain by losing the electron in a reaction).
Hope this helps :)
Answer:
The equivalent weight of M is approximately 31.8 g
The equivalent weight of N is approximately 27.98 g
Explanation:
The given parameters are;
The percentage of the the metal M in in the chloride = 47.25%
Where by the chemical formula for the metal chloride is MClₓ, we have;
47.25% of the mass of MClₓ = Mass of M = W
Therefore, we have;
![\dfrac{0.4725}{W} = \dfrac{1}{W + 35.5 \cdot x}](https://tex.z-dn.net/?f=%5Cdfrac%7B0.4725%7D%7BW%7D%20%3D%20%5Cdfrac%7B1%7D%7BW%20%2B%2035.5%20%5Ccdot%20x%7D)
0.4725 × (W + 35.5·x) = W
0.4725·W + 0.4725×35.5×x = W
W - 0.4725·W = 16.77·x
0.5275·W = 16.77·x
W/x = 16.77/0.5275 = 31.799 = The equivalent weight of M
The equivalent weight of M = 31.799 ≈ 31.8 g
Given that 1 gram of M is displaced by 0.88 gram of N, then the equivalent weight of N that will displace 31.799 = 0.88 × 31.799 ≈ 27.98 g
The equivalent weight of N = 27.98 g.