Answer:
La frecuencia cardíaca objetivo durante las actividades de intensidad moderada es aproximadamente del 50 al 70% de la frecuencia cardíaca máxima, mientras que durante la actividad física intensa es de, aproximadamente, entre el 70 y el 85% del valor máximo.
KE = 1/ 2 * 1252 * 144
as KE = 1/2 * m * v ^2
= 90144 J
Answer:
(a) A = 1 mm
(b) 
(c) ![a_{max}=606.4 m/s^{2}/tex]Explanation:Distance moved back and forth = 2 mm Frequency, f = 124 HzSo, amplitude is the half of the distance traveled back and forth. (a) So, amplitude, A = 1 mm(b) Angular frequency, ω = 2 π f = 2 x 3.14 x 124 = 778.72 rad/s The formula for the maximum speed is given by [tex]V_{max}=\omega \times A](https://tex.z-dn.net/?f=a_%7Bmax%7D%3D606.4%20m%2Fs%5E%7B2%7D%2Ftex%5D%3C%2Fp%3E%3Cp%3E%3Cstrong%3EExplanation%3A%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3EDistance%20moved%20back%20and%20forth%20%3D%202%20mm%20%3C%2Fp%3E%3Cp%3EFrequency%2C%20f%20%3D%20124%20Hz%3C%2Fp%3E%3Cp%3ESo%2C%20amplitude%20is%20the%20half%20of%20the%20distance%20traveled%20back%20and%20forth.%20%3C%2Fp%3E%3Cp%3E%28a%29%20So%2C%3Cstrong%3E%20amplitude%2C%20A%20%3D%201%20mm%3C%2Fstrong%3E%3C%2Fp%3E%3Cp%3E%28b%29%20Angular%20frequency%2C%20%CF%89%20%3D%202%20%CF%80%20f%20%3D%202%20x%203.14%20x%20124%20%3D%20778.72%20rad%2Fs%20%3C%2Fp%3E%3Cp%3EThe%20formula%20for%20the%20maximum%20speed%20is%20given%20by%20%3C%2Fp%3E%3Cp%3E%5Btex%5DV_%7Bmax%7D%3D%5Comega%20%5Ctimes%20A)


(c) The formula for the maximum acceleration is given by


[tex]a_{max}=606.4 m/s^{2}/tex]
The answer is b i just did the test
I attached the missing picture.
The force of seat acting on the child is a reaction the force of child pressing down on the seat. This is the third Newton's law. The force of a child pressing down the seat and the force of the seat pushing up on the child are the same.
There two forces acting on the child. The first one is the gravitational force and the second one is centrifugal force. In this example, the force of gravity is always pulling down, but centrifugal force always acts away from the center of circular motion.
Part AFor point A we have:

In this case, the forces are aligned, centrifugal is pointing up and gravitational is pulling down.
Part BAt the point, B situation is a bit more complicated. In this case force of gravity and centrifugal force are not aligned. We have to look at y components of this forces, y-axis, in this case, is just pointing upward.
Part CThe child will stay in place at point A when centrifugal force and force of gravity are in balance: