Answer:
c. may be accompanied by the sound of explosively expanding hot air, called thunder.
Explanation:
Lightning is a discharge which is due to the reaction between oppositely charged charges in the clouds, or between clouds base and the Earth surface.
The motion of the cloud causes charging of clouds by friction, thus the reaction between opposite charges (jumping of charges from one cloud to another) in the cloud can lead to lightning. Also, oftentimes the bottom of a cloud is negatively charged so that this is attracted to the positive charge on the earth surface. Thus leading to a discharge called lightning.
Thus in the given question, the appropriate option is C. This implies that, lightning may be accompanied by the sound of explosively expanding hot air, called thunder.
Answer:
given , v = 300 km/hr; distance d = 1500 km; then time t = d/v = 1500/300 = 5 hrs
Explanation:
Hope this shows! It has all the equations for all of the problems u asked in the comments
Answer:
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one ... Typical radio wave frequencies are about 88~108 MHz .
Explanation:
To calculate the wavelength of a radio wave, you will be using the equation: Speed of a wave = wavelength X frequency.
Since radio waves are electromagnetic waves and travel at 2.997 X
10
8
meters/second, then you will need to know the frequency of the radio wave.
If the radio wave is on an FM station, these are in Megahertz. A megahertz is one million hertz. If the radio wave is from an AM radio station, these are in kilohertz (there are one thousand hertz in a kilohertz). Hertz are waves/second. Hertz is usually the label for the frequency of electromagnetic waves.
To conclude, to determine the wavelength of a radio wave, you take the speed and divide it by the frequency.
Typical radio wave frequencies are about
88
~
108
MHz
. The wavelength is thus typically about
3.41
×
10
9
~
2.78
×
10
9
nm
.
The denser the medium, the harder the sound struggles to travel through. The medium will determine how effectively the sound will travel, for example, large bodies of water has barely any sound for its density.