Answer:

Explanation:
The expression for the work done is:

Where,
W is the amount of work done by the gas
R is Gas constant having value = 8.314 J / K mol
T is the temperature
P₁ is the initial pressure
P₂ is the final pressure
Given that:
T = 300 K
P₁ = 10 bar
P₂ = 1 bar
Applying in the equation as:




The atomic number of an element is based on the number of protons in the atomic nuclei of its atoms.
Answer:
PV=nRt
Therefore n(number of moles)=PV/RT
=>(0.49×3.80)/(0.08206×320)
Therefore Number of moles is = 0.071mols
Explanation: By using the Real gas equation..
PV=NRT .
We can solve for the number of moles of Ar by making N the subject..
Always make sure you pressure is In atm, your Volume is in Litres and temperature in degree Kelvin.
Also Recall the universal gas constant R used in this type of questions which is 0.08206.
Hence l, by making N the subject we get our answer as
Water moves from an area of higher water potential (aka. "more water" in simple language) to an area of lower water potential (aka. "less water" in simple language).
For A, cells in carrots have water stored in their cytoplasm, where many soluble substances may be found (e.g. sodium ions). On the other hand, pure water has no other soluble substances other than the water molecules (I.e. H2O). Pure water will thus have a higher water potential as compared to the water in carrot cells, and so, water will move from pure water into the carrot cells via osmosis down a concentration gradient.
B. Corn syrup is water that has high concentrations of sugars, thus it is very likely to have a lower water potential than the cells of carrots. Water will move from within the cells of carrots and out to the corn syrup, down a concentration gradient.
C. The water in carrot cells will stay the same, since carrot cells have the same water potential as the surrounding solution which has the same water potential as cytoplasm.
Hope this helps! :)