It is spontaneous at 298 k.
Answer:
6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
Explanation:
We are given the chemical equation:

And we want to determine the amount of products produced when 12.5 moles of NH₃ is reacted with excess CuO.
Compute using stoichiometry. From the equation, we can see the following stoichiometric ratios:
- The ratio between NH₃ and N₂ is 2:1. (i.e. One mole of N₂ is produced from every two moles of NH₃.)
- The ratio between NH₃ and Cu is 2:3.
- The ratio between NH₃ and H₂O is 2:3. (i.e. Three moles of H₂O or Cu is produced frome every two moles of NH₃.)
Dimensional Analysis:
- The amount of N₂ produced:

- The amount of Cu produced:

- And the amount of H₂O produced:

In conclusion, 6.25 moles of N₂ is produced, and 18.8 moles of Cu and H₂O is produced.
10 electrons
Explanation:
The maximum number of electrons in a single d-subshell is 10 electrons.
The d-notation stands for an azimuthal quantum number or secondary quantum number.
This subshell can only accommodate a maximum of 10 electrons.
d- subshell has five orbitals
Each orbital is able to accommodate 2 electrons.
Therefore 5 x 2 = 10 electrons
learn more:
Atomic orbital brainly.com/question/1832385
#learnwithBrainly
Answer:
See below
Step-by-step explanation:
- Hydrogen either reacts with or is formed by reactions with many other elements, so chemists could use it directly to determine their relative masses.
- Hydrogen has the smallest atomic mass, so it was convenient to give H a relative atomic mass of 1 and assign those of other elements as multiples of this number.
The O = 16 scale became the standard in 1903 and carbon-12 was chosen in 1961.
Answer:
yes; and because of how roughly they are played.
Explanation: