1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
6

a projectile is lunched with an initial speed of 60.0mm/s at an angle of 30.0° above the horizontal.The projectile lands on a hi

llside 4 s later.Neglect air friction.(a)what is the projectile's velocity at the highest point of its trajectory?​
Physics
1 answer:
alexandr402 [8]3 years ago
6 0

Answer:

52 mm/s (approximately)

Explanation:

Given:

Initial speed of the projectile is, u=60.0\ mm/s

Angle of projection is, \theta=30.0\°

Time taken to land on the hill is, t=4\ s

In a projectile motion, there is acceleration only in the vertical direction which is equal to acceleration due to gravity acting vertically downward. There is no acceleration in the horizontal direction.

So, the velocity in the horizontal direction always remains the same.

The horizontal component of initial velocity is given as:

u_x=u\cos\theta\\u_x=60\times \cos(30)\\u_x=30\sqrt3\approx52\ mm/s

Now, the velocity in the vertical direction goes on decreasing and becomes 0 at the highest point of the trajectory. So, at the highest point, only horizontal component acts.

Therefore, the projectile's velocity at the highest point of its trajectory is equal to the horizontal component of initial velocity and thus is equal to 52 mm/s.

You might be interested in
A 1150 kg pile driver is used to drive a steel I-beam into the ground. The pile driver falls 7.69 m before contacting the beam,
Natasha_Volkova [10]

Answer:

the average force 11226 N  

Explanation:

Let's analyze the problem we are asked for the average force, during the crash, we can find this from the impulse-momentum equation, but this equation needs the speeds and times of the crash that we could look for by kinematics.

Let's start looking for the stack speeds, it has a free fall, from rest  (Vo=0)

             

           Vf² = Vo² - 2gY

            Vf² = 0 - 2 9.8 7.69 = 150.7

            Vf = 12.3 m / s

This is the speed that the battery likes when it touches the beam.  They also give us the distance it travels before stopping, let's calculate the time

         

            Vf = Vo - g t

             0 = Vo - g t

             t = Vo / g

             t = 12.3 / 9.8

             t = 1.26 s

This is the time to stop

Now let's use the equation that relates the impulse to the amount of movement

                 I = Δp

                F t = pf-po

The amount of final movement is zero because the system stops

                F = - po / t

                F = - mv / t

                F = - 1150 12.3 / 1.26

                F = -11226 N

This is the average force exerted by the stack on the vean

7 0
3 years ago
Kayla draws the image shown as part of her physical science homework.
AnnZ [28]
What the question for this assessment
8 0
2 years ago
Which image illustrates the bouncing of a light wave off of a surface?
Naily [24]

Answer:

The answer is A good luck :P

8 0
3 years ago
Read 2 more answers
The 8 kg block is then released and accelerates to the right, toward the 2 kg block. The surface is rough and the coefficient of
natita [175]

Answer:

3.258 m/s

Explanation:

k = Spring constant = 263 N/m (Assumed, as it is not given)

x = Displacement of spring = 0.7 m (Assumed, as it is not given)

\mu = Coefficient of friction = 0.4

Energy stored in spring is given by

U=\dfrac{1}{2}kx^2\\\Rightarrow U=\dfrac{1}{2}\times 263\times 0.7^2\\\Rightarrow U=64.435\ J

As the energy in the system is conserved we have

\dfrac{1}{2}mv^2=U-\mu mgx\\\Rightarrow v=\sqrt{2\dfrac{U-\mu mgx}{m}}\\\Rightarrow v=\sqrt{2\dfrac{64.435-0.4\times 8\times 9.81\times 0.7}{8}}\\\Rightarrow v=3.258\ m/s

The speed of the 8 kg block just before collision is 3.258 m/s

7 0
3 years ago
A force acts on a 9.90 kg mobile object that moves from an initial position of to a final position of in 5.40 s. Find (a) the wo
horrorfan [7]

Given that,

Mass of object = 9.90 kg

Time =5.40 s

Suppose the force is (2.00i + 9.00j + 5.30k) N, initial position is (2.70i - 2.90j + 5.50k) m and final position is (-4.10i + 3.30j + 5.40k) m.

We need to calculate the displacement

Using formula of displacement

s=r_{2}-r_{1}

Where, r_{1} = initial position

r_{2} = final position

Put the value into the formula

s= (-4.10i + 3.30j + 5.40k)-(2.70i - 2.90j + 5.50k)

s= -6.80i+6.20j-0.1k

(a). We need to calculate the work done on the object

Using formula of work done

W=F\cdot s

Put the value into the formula

W=(2.00i + 9.00j + 5.30k)\cdot (-6.80i+6.20j-0.1k)

W=-13.6+55.8-0.53

W=41.67\ J

(b). We need to calculate the average power due to the force during that interval

Using formula of power

P=\dfrac{W}{t}

Where, P = power

W = work

t = time

Put the value into the formula

P=\dfrac{41.67}{5.40}

P=7.71\ Watt

(c). We need to calculate the angle between vectors

Using formula of angle

\theta=\cos^{-1}(\dfrac{r_{1}r_{2}}{|r_{1}||r_{2}|})

Put the value into the formula

\theta=\cos^{-1}\dfrac{(-4.10i + 3.30j + 5.40k)\cdot(2.70i - 2.90j + 5.50k)}{7.54\times6.778})

\theta=79.7^{\circ}

Hence, (a). The work done on the object by the force in the 5.40 s interval is 41.67 J.

(b). The average power due to the force during that interval is 7.71 Watt.

(c).  The angle between vectors is 79.7°

7 0
3 years ago
Other questions:
  • A relaxed biceps muscle requires a force of 25.0N for an elongation of 3.0 cm; under maximum tension, the same muscle requires a
    5·1 answer
  • Alex climbs to the top of a tall tree while his friend Gary waits on the ground below. Alex throws down a ball at 8 m/s from 50
    5·1 answer
  • What is the unit for current? <br> a. a <br> b. c <br> c. i <br> d. t
    5·1 answer
  • For study, the Earth can be divided into three parts:
    15·2 answers
  • During what era did the French and Indian War occur?
    13·2 answers
  • A force of 20 newtons is exerted on a chair from its right and a force of 12 newtons is applied from
    6·1 answer
  • A bullet of mass 120g is fired horizontally into a fixed wooden block with a speed of 20m\s. The bullet is brought to rest in a
    10·1 answer
  • B. The coefficient of friction between the tires and the road is 0.850 and the mass of the car is
    6·1 answer
  • Question 2 of 10
    13·1 answer
  • Joanna claims that a large block of ice will cool a substance more than a small block of ice will at the same temperature. To su
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!