Answer:
A. Doubles.
Explanation:
In an electromagnetic device such as a generator, when a wire (conductor) moves through the magnetic field between the South and North poles of a magnet, an electromotive force (e.m.f) is usually induced across a wire
The mode of operation of a generator is that a metal core with copper tightly wound to it (conductor coil) rotates rapidly between the two (2) poles of a horseshoe magnet type. Thus when the conductor coil rotates rapidly, it cuts the magnetic field existing between the poles of the horseshoe magnet and then induces the flow of current.
When a high-resistance voltmeter is connected to an electric circuit, a deflection will arise due to the flow of electricity. Moving the magnet towards the coil of wire will cause the needle of the high-resistance voltmeter to move in one direction. Also, as the magnet is moved out from the coil of wire, the needle of the high-resistance voltmeter moves in the opposite direction.
In this scenario, a magnet is moved in and out of a coil of wire connected to a high-resistance voltmeter. If the number of coils doubles, the induced voltage doubles because the number of turns (voltage) in the primary winding is directly proportional to the number of turns (voltage) in the secondary winding.
B. Gabriella is slowing down at the same rate that Kendall is speeding up, and Franklin is not accelerating.
Weight of the barbell W = 200 Ndistance of the joint is r = 40 cm = 0.4 mtorque created by the weight at the joint is τ = F*r = 200 N*0.4 m = 80 N.mat equilibrium condition , Στ = force*distance - 80 N.m = 0 F'*0.4 - 80 N.m = 0 F'*0.4 = 80 force F' = 200 N
The addition of vectors and the uniform motion allows to find the answers for the questions about distance and time are:
- The distance to go between airports A and C is 373.6 10³ m
- The time to go from airport A to B is 2117 s
Vectors are quantities that have modulus and direction, so their addition must be done using vector algebra.
In this case the plane flies towards the North a distance of y = 360 10³ m at an average speed of v = 170 m / s, when arriving at airport B it turns towards the East and travels from x = 100 10³ m, until' it the distance reaches the airport C
Let's use the Pythagoras theorem to find the distance traveled
R = Ra x² + y²
R = 10³
R = 373.6 10³ m
They indicate the average speed for which we can use the uniform motion ratio
v = 
t = 
They ask for the time in in from airport A to B, we calculate
t = 360 10 ^ 3/170
t = 2.117 10³ s
In conclusion we use the addition of vectors the uniform motion we can find the answer for the question of distance and time are:
- The distance to go between airports A and C B is 373.6 10³ m
- The time to go from airport A to B is 2117 s
Learn more here: brainly.com/question/15074838