The horizontal force applied to the block is approximately 1,420.84 N
The known parameters;
The mass of the block, w₁ = 400 kg
The orientation of the surface on which the block rest, w₁ = Horizontal
The mass of the block placed on top of the 400 kg block, w₂ = 100 kg
The length of the string to which the block w₂ is attached, l = 6 m
The coefficient of friction between the surface, μ = 0.25
The state of the system of blocks and applied force = Equilibrium
Strategy;
Calculate the forces acting on the blocks and string
The weight of the block, W₁ = 400 kg × 9.81 m/s² = 3,924 N
The weight of the block, W₂ = 100 kg × 9.81 m/s² = 981 N
Let <em>T</em> represent the tension in the string
The upward force from the string = T × sin(θ)
sin(θ) = √(6² - 5²)/6
Therefore;
The upward force from the string = T×√(6² - 5²)/6
The frictional force = (W₂ - The upward force from the string) × μ
The frictional force,
= (981 - T×√(6² - 5²)/6) × 0.25
The tension in the string, T =
× cos(θ)
∴ T = (981 - T×√(6² - 5²)/6) × 0.25 × 5/6
Solving, we get;
![T = \dfrac{5886}{\sqrt{6^2 - 5^2} + 28.8} \approx 183.27](https://tex.z-dn.net/?f=T%20%3D%20%5Cdfrac%7B5886%7D%7B%5Csqrt%7B6%5E2%20-%205%5E2%7D%20%2B%2028.8%7D%20%5Capprox%20183.27)
![Frictional \ force, F_{f2} = \left (981 - \dfrac{5886}{\sqrt{6^2 - 5^2} + 28.8} \times \dfrac{\sqrt{6^2 - 5^2} }{6} \times 0.25 \right) \approx 219.92](https://tex.z-dn.net/?f=Frictional%20%5C%20force%2C%20F_%7Bf2%7D%20%3D%20%5Cleft%20%28981%20-%20%20%5Cdfrac%7B5886%7D%7B%5Csqrt%7B6%5E2%20-%205%5E2%7D%20%2B%2028.8%7D%20%20%5Ctimes%20%5Cdfrac%7B%5Csqrt%7B6%5E2%20-%205%5E2%7D%20%7D%7B6%7D%20%5Ctimes%20%200.25%20%5Cright%29%20%5Capprox%20219.92)
The frictional force on the block W₂,
≈ 219.92 N
Therefore;
The force acting the block w₁, due to w₂
= 219.92/0.25 ≈ 879.68
The total normal force acting on the ground, N = W₁ + ![\mathbf{F_{w2}}](https://tex.z-dn.net/?f=%5Cmathbf%7BF_%7Bw2%7D%7D)
The frictional force from the ground,
= N×μ +
= P
Where;
P = The horizontal force applied to the block
P = (W₁ +
) × μ + ![\mathbf{F_{f2}}](https://tex.z-dn.net/?f=%5Cmathbf%7BF_%7Bf2%7D%7D)
Therefore;
P = (3,924 + 879.68) × 0.25 + 219.92 ≈ 1,420.84
The horizontal force applied to the block, P ≈ 1,420.84 N
Learn more about friction force here;
brainly.com/question/18038995