Answer:
7.39ev
Explanation:
Energy levels are found inside the atom. Electrons occupy these energy levels depending on the energy they possess. Electrons can move from one energy level to another due to absorption or emission of a photon or other factors. As the electron, jumps from a higher energy level to a lower energy level emitting a photon of measurable frequency, the photon carries energy equal to the amount of energy between the gap of the levels. This idea was first proposed by Neils Bohr and became the forerunner of the wave mechanical model of the atom.
Hence the energy of a photon is the energy of the gap between the two energy levels. Since Ea= 2.48ev and Eg= 10.38 ev.
If an electron jumps from Ea to Eg, the energy of the photon absorbed is given by;
E=Eg-Ea
E= 10.38ev - 2.48ev
E= 7.39ev
Answer:
1800 N
Solution:
Impulse = mΔv = m * (u - v) .
here m = 100 kg
u = 4 m/s
v = -5 m/s
impulse = 100 x ( 4 - ( -5 ) ) = 900 Kg m/s .
Average reaction Force ( Favg ) = impulse / Δt
Average reaction Force ( Favg ) = 900kg·m/s / 0.5s
Average reaction Force ( Favg ) = 1800 N
It will take a shorter amount of time for the cylinder to go down the plane down off the plane Because more pressure is applied one going up then going down there’s no pressure at all it’s the gravity is helping
Answer:
30 minutes
Explanation:
Energy per time is constant, so:
E₁ / t₁ = E₂ / t₂
m₁C₁ΔT₁ / t₁ = m₂C₂ΔT₂ / t₂
(1 kg) C (70°C − 25°C) / 15 min = (1.5 kg) C (80°C − 20°C) / t
(1 kg) (45°C) / 15 min = (1.5 kg) (60°C) / t
3/min = 90 / t
t = 30 min