The given function f(x) = |x + 3| has both an absolute maximum and an absolute minimum.
What do you mean by absolute maximum and minimum ?
A function has largest possible value at an absolute maximum point, whereas its lowest possible value can be found at an absolute minimum point.
It is given that function is f(x) = |x + 3|.
We know that to check if function is absolute minimum or absolute maximum by putting the value of modulus either equal to zero or equal to or less than zero and simplify.
So , if we put |x + 3| = 0 , then :
± x + 3 = 0
±x = -3
So , we can have two values of x which are either -3 or 3.
The value 3 will be absolute maximum and -3 will be absolute minimum.
Therefore , the given function f(x) = |x + 3| has both an absolute maximum and an absolute minimum.
Learn more about absolute maximum and minimum here :
brainly.com/question/17438358
#SPJ1
Answer:
Step 1: Remove parentheses by multiplying factors.
= (x * x) + (1 * x) + (2 * x) + (2 * 1)
Step 2: Combine like terms by adding coefficients.
(x * x) = x2
(1 * x) = 1x
(2* x) = 2x
Step 3: Combine the constants.
(2 * 1) = 2
Step 4: Therefore, Simplifying Algebraic Expression is solved as
= x2 + 3x + 2.
-10/3 is smaller and 1 is bigger.
Answer:
10-x ft long
Step-by-step explanation:
If it starts out 10ft long, and xft is taken away, then the remaining board would be 10-x ft long.
In terms of x, I believe it would just be 10-x ft long
The answer is
C. - (x + 3)(x - 4)
because if you solve this....
- (x + 3)(x - 4)
(-x - 3)(x - 4)
-x^2 +4x - 3x + 12
-x^2 + x + 12