<h3>Answers:</h3>
1) 2 Units of Ozone
2) 3 Units of Ozone
3) 9 Units of Ozone
<h3>Solution:</h3>
1) From 6 Oxygen Particles;
As given,
3 Oxygen Particles form = 1 Unit of Ozone
So,
6 Oxygen Particles will form = X Units of Ozone
Solving for X,
X = (6 O Particles × 1 Unit of Ozone) ÷ 3 O Particles
X = 2 Units of Ozone
2) From 9 Oxygen Particles;
As given,
3 Oxygen Particles form = 1 Unit of Ozone
So,
9 Oxygen Particles will form = X Units of Ozone
Solving for X,
X = (9 O Particles × 1 Unit of Ozone) ÷ 3 O Particles
X = 3 Units of Ozone
3) From 27 Oxygen Particles;
As given,
3 Oxygen Particles form = 1 Unit of Ozone
So,
27 Oxygen Particles will form = X Units of Ozone
Solving for X,
X = (27 O Particles × 1 Unit of Ozone) ÷ 3 O Particles
X = 9 Units of Ozone
Answer: Polar Easterlies
Explanation: Winds flow from high pressure areas to low pressure areas. They originate in the north and south pole creating high pressure zones which generates an outflow. This outflow is then directed from east to west and hence the term used to describe these winds is Polar Easterlies.
Answer:
The average velocity of the airplane for this trip is 1684.21 km/h
Explanation:
Average velocity is the rate of change of displacement with time. That is,
Average velocity =
= Δx / Δt = 
Now we will calculate the time taken by the airplane for the first motion before it encounters a wind.
From,
Velocity = 
Time = 
Therefore, Time = 
Time = 2.1h
This is the time taken before the airplane encounters a wind.
Hence, t1 = 2.1h
Now, For the time taken by the airplane when it encounters a wind
Also from,
Velocity = 
Time = 
Therefore, Time = 
Time = 1.625h
Hence, t2 = 1.625h
Now, to calculate the average velocity
Average velocity = 
x1= 2100, x2= 1300, t1= 2.1h and t2= 1.625h
Hence, Average velocity = 
Average velocity = 1684.21 km/h
Answer:
B. CH3Br
Explanation:
Dipole -Dipole interactions take place in polar molecules.
CH3Br exhibits dipole -dipole forces as its strongest attraction between molecules because it is a polar molecule due to the slightly negative dipole present on the Br molecule.
While O2 is a nonpolar molecule due to its linear structure, CCl4 has zero resultant dipole moment, Helium is non-polar and BrCH2CH2OH is a non polar compound having net dipole moment is zero.
Hence, the correct option is B. CH3Br.