Answer:
stop, drop and roll.
Explanation:
This is because rolling on the ground can help put out the fire by depriving it of oxygen.
Base on your question where a 14.8g of piece of Styrofoam carries a net charge of -0.742C and is suspended in equilibrium above the center of a large, horizontal sheet of plastic so the ask of the problem is to calculate the charge per unit area on the plastic sheet. The answer would be 21.96
Answer:
R = 710.7N
L = 67.689 N
During gravity fall L = R = 0 N
Explanation:
So the acceleration that the elevator is acting on the woman (and the package) in order to result in a net acceleration of 0.15g is
g + 0.15g = 1.15g
The force R that the elevator exerts on her feet would be product of acceleration and total mass (Newton's 2nd law):
a(m + M) = 1.15g(57 + 6) = 1.15*9.81*63 = 710.7N
The force L that she exerts on the package would be:
am = 1.15g *6 = 1.15*9.81*6 = 67.689N
When the system is falling, all have a net acceleration of g. So the acceleration that the elevator exerts on the woman (and the package) is 0, and so are the forces L and R.
Answer:
Angle Angle Similarity Postulate
Explanation:
Answer:
The minimum frequency required to ionize the photon is 111.31 ×
Hertz
Given:
Energy = 378 ![\frac{kJ}{mol}](https://tex.z-dn.net/?f=%5Cfrac%7BkJ%7D%7Bmol%7D)
To find:
Minimum frequency of light required to ionize magnesium = ?
Formula used:
The energy of photon of light is given by,
E = h v
Where E = Energy of magnesium
h = planks constant
v = minimum frequency of photon
Solution:
The energy of photon of light is given by,
E = h v
Where E = Energy of magnesium
h = planks constant
v = minimum frequency of photon
738 ×
= 6.63 ×
× v
v = 111.31 ×
Hertz
The minimum frequency required to ionize the photon is 111.31 ×
Hertz