1) n=1 -> n=2 : delta E = -5+11 = 6. The answer is D
<span>2) n=1 -> n=3 : delta E = -2+11 = 9. The answer is B </span>
<span>3) n=1 -> n=4 : delta E = -1+11 = 10. No solution available </span>
<span>4) n=1 -> infinity delta E = 11. The answer is A </span>
<span>5) not absorbed would be C, as there is no transition with delta E of 8. </span>
I think it is c density and temperature
Answer:
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
Explanation:
This hypothesis is based on the fact that the speed of sound in air is v = 343 m / s with a small variation with temperature.
The speed of sound in solid soil is an average of the speed of its constituent media, giving values between
wood 3900 m / s
concrete 4000 m / s
fabrics 1540 m / s
earth 5000 m / s wave S
ground 7000 m / s P wave
we can see that the speed on solid earth is an order of magnitude greater than in air.
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
From the initial information, the wave going through the ground should arrive first.
Answer:corrosion (i believe)
Explanation:
Answer:
≈ 2.1 R
Explanation:
The moment of inertia of the bodies can be calculated by the equation
I = ∫ r² dm
For bodies with symmetry this tabulated, the moment of inertia of the center of mass
Sphere = 2/5 M R²
Spherical shell = 2/3 M R²
The parallel axes theorem allows us to calculate the moment of inertia with respect to different axes, without knowing the moment of inertia of the center of mass
I = + M D²
Where M is the mass of the body and D is the distance from the center of mass to the axis of rotation
Let's start with the spherical shell, axis is along a diameter
D = 2R
Ic = + M D²
Ic = 2/3 MR² + M (2R)²
Ic = M R² (2/3 + 4)
Ic = 14/3 M R²
The sphere
Is = + M [²
Is = Ic
2/5 MR² + M ² = 14/3 MR²
² = R² (14/3 - 2/5)
= √ (R² (64/15)
= 2,066 R