Answer:
Yes i am agree with this suggestion
Explanation:
Given that we have to assume that there is no any frictional affects.
As we know that when height increases then the discharge level will decreases when discharge level decreases then the time of filling for the bucket will increase.So the bucket will fill faster if the hose lowered until knee level.
Yes i am agree with this suggestion
Answer:
magnitude of the magnetic field 0.692 T
Explanation:
given data
rectangular dimensions = 2.80 cm by 3.20 cm
angle of 30.0°
produce a flux Ф = 3.10 ×
Wb
solution
we take here rectangular side a and b as a = 2.80 cm and b = 3.20 cm
and here angle between magnitude field and area will be ∅ = 90 - 30
∅ = 60°
and flux is express as
flux Ф =
.................1
and Ф = BA cos∅ ............2
so B =
and we know
A = ab
so
B =
..............3
put here value
B =
solve we get
B = 0.692 T
Answer:
the weight is 49.1 N
Explanation:
The computation of the weight is shown below:
As we know that
= 5kg of potatoes × gravitational acceleration
= 5kg of potatoes × 9.82 m/s
= 49.1 N
Hence, the weight is 49.1 N
We simply applied the above formula in order to determine the weight
Answer:
a)
= 0.25 m / s b) u = 0.25 m / s
Explanation:
a) To solve this problem let's start with the conservation of the moment, for this we define a system formed by the ball plus the dog, in this case all the forces are internal and the moment is conserved
We will write the data
m₁ = 0.40 kg
v₁₀ = 9.0 m / s
m₂ = 14 kg
v₂₀ = 0
Initial
po = m₁ v₁₀
Final
= (m₁ + m₂) vf
po = pf
m₁ v₁₀ = (m₁ + m₂) 
= v₁₀ m₁ / (m₁ + m₂)
= 9.0 (0.40 / (0.40 +14)
= 0.25 m / s
b) This is the reference frame of the center of mass of the system in this case the speed of this frame is the speed of the center of mass
u = 0.25 m / s
In the direction of movement of the ball
c) Let's calculate the kinetic energy in both moments
Initial
K₀ = ½ m₁ v₁₀² +0
K₀ = ½ 0.40 9 2
K₀ = 16.2 J
Final
= ½ (m₁ + m₂)
2
= ½ (0.4 +14) 0.25 2
= 0.45 J
ΔK = K₀ - 
ΔK = 16.2-0.445
ΔK = 1575 J
These will transform internal system energy
d) In order to find the kinetic energy, we must first find the velocities of the individual in this reference system.
v₁₀’= v₁₀ -u
v₁₀’= 9 -.025
v₁₀‘= 8.75 m / s
v₂₀ ‘= v₂₀ -u
v₂₀‘= - 0.25 m / s
‘=
- u
= 0
Initial
K₀ = ½ m₁ v₁₀‘² + ½ m₂ v₂₀‘²
Ko = ½ 0.4 8.75² + ½ 14.0 0.25²
Ko = 15.31 + 0.4375
K o = 15.75 J
Final
= ½ (m₁ + m₂) vf’²
= 0
All initial kinetic energy is transformed into internal energy in this reference system