Answer:
Scientists have identified about a dozen major and several minor tectonic plates
Answer: At that moment, all the baseball's kinetic energy has been converted to potential energy.
Explanation: I took the test
Answer:
At the highest point the velocity is zero, the acceleration is directed downward.
Explanation:
This is a free-fall problem, in the case of something being thrown or dropped, the acceleration is equal to -gravity, so -9.80m/s^2. So, the acceleration is never 0 here.
I attached an image from my lecture today, I find it to be helpful. You can see that because of gravity the acceleration is pulled downwards.
At the highest point the velocity is 0, but it's changing direction and that's why there's still an acceleration there.
Answer: 11369.46 m/s
Explanation:
We have the following data:
is the mass of the bowling ball
is the velocity of the bowling ball
is the mass of the ping-pong ball
is the velocity of the ping-pong ball
Now, the momentum of the bowling ball is:
(1)
(2)
And the momentum of the ping-pong ball is:
(3)
If the momentum of the bowling ball is equal to the momentum of the ping-pong ball:
(4)
(5)
Isolating :
(6)
(7)
Finally:
The force needed to stretch the steel wire by 1% is 25,140 N.
The given parameters include;
- diameter of the steel, d = 4 mm
- the radius of the wire, r = 2mm = 0.002 m
- original length of the wire, L₁
- final length of the wire, L₂ = 1.01 x L₁ (increase of 1% = 101%)
- extension of the wire e = L₂ - L₁ = 1.01L₁ - L₁ = 0.01L₁
- the Youngs modulus of steel, E = 200 Gpa
The area of the steel wire is calculated as follows;
The force needed to stretch the wire is calculated from Youngs modulus of elasticity given as;
Thus, the force needed to stretch the steel wire by 1% is 25,140 N.
Learn more here: brainly.com/question/21413915